Metamath Proof Explorer


Theorem hauslly

Description: A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion hauslly
|- ( J e. Haus -> J e. Locally Haus )

Proof

Step Hyp Ref Expression
1 resthaus
 |-  ( ( j e. Haus /\ x e. j ) -> ( j |`t x ) e. Haus )
2 1 adantl
 |-  ( ( T. /\ ( j e. Haus /\ x e. j ) ) -> ( j |`t x ) e. Haus )
3 haustop
 |-  ( j e. Haus -> j e. Top )
4 3 ssriv
 |-  Haus C_ Top
5 4 a1i
 |-  ( T. -> Haus C_ Top )
6 2 5 restlly
 |-  ( T. -> Haus C_ Locally Haus )
7 6 mptru
 |-  Haus C_ Locally Haus
8 7 sseli
 |-  ( J e. Haus -> J e. Locally Haus )