Description: A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hauslly | |- ( J e. Haus -> J e. Locally Haus ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resthaus | |- ( ( j e. Haus /\ x e. j ) -> ( j |`t x ) e. Haus ) |
|
2 | 1 | adantl | |- ( ( T. /\ ( j e. Haus /\ x e. j ) ) -> ( j |`t x ) e. Haus ) |
3 | haustop | |- ( j e. Haus -> j e. Top ) |
|
4 | 3 | ssriv | |- Haus C_ Top |
5 | 4 | a1i | |- ( T. -> Haus C_ Top ) |
6 | 2 5 | restlly | |- ( T. -> Haus C_ Locally Haus ) |
7 | 6 | mptru | |- Haus C_ Locally Haus |
8 | 7 | sseli | |- ( J e. Haus -> J e. Locally Haus ) |