Step |
Hyp |
Ref |
Expression |
1 |
|
hauspwdom.1 |
|- X = U. J |
2 |
1
|
1stcelcls |
|- ( ( J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
3 |
2
|
3adant1 |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
4 |
|
uniexg |
|- ( J e. Haus -> U. J e. _V ) |
5 |
4
|
3ad2ant1 |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> U. J e. _V ) |
6 |
1 5
|
eqeltrid |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> X e. _V ) |
7 |
|
simp3 |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> A C_ X ) |
8 |
6 7
|
ssexd |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> A e. _V ) |
9 |
|
nnex |
|- NN e. _V |
10 |
|
elmapg |
|- ( ( A e. _V /\ NN e. _V ) -> ( f e. ( A ^m NN ) <-> f : NN --> A ) ) |
11 |
8 9 10
|
sylancl |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( f e. ( A ^m NN ) <-> f : NN --> A ) ) |
12 |
11
|
anbi1d |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) <-> ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
13 |
12
|
exbidv |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) <-> E. f ( f : NN --> A /\ f ( ~~>t ` J ) x ) ) ) |
14 |
3 13
|
bitr4d |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) ) ) |
15 |
|
df-rex |
|- ( E. f e. ( A ^m NN ) f ( ~~>t ` J ) x <-> E. f ( f e. ( A ^m NN ) /\ f ( ~~>t ` J ) x ) ) |
16 |
14 15
|
bitr4di |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> E. f e. ( A ^m NN ) f ( ~~>t ` J ) x ) ) |
17 |
|
vex |
|- x e. _V |
18 |
17
|
elima |
|- ( x e. ( ( ~~>t ` J ) " ( A ^m NN ) ) <-> E. f e. ( A ^m NN ) f ( ~~>t ` J ) x ) |
19 |
16 18
|
bitr4di |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) <-> x e. ( ( ~~>t ` J ) " ( A ^m NN ) ) ) ) |
20 |
19
|
eqrdv |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) = ( ( ~~>t ` J ) " ( A ^m NN ) ) ) |
21 |
|
ovex |
|- ( A ^m NN ) e. _V |
22 |
|
lmfun |
|- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
23 |
22
|
3ad2ant1 |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> Fun ( ~~>t ` J ) ) |
24 |
|
imadomg |
|- ( ( A ^m NN ) e. _V -> ( Fun ( ~~>t ` J ) -> ( ( ~~>t ` J ) " ( A ^m NN ) ) ~<_ ( A ^m NN ) ) ) |
25 |
21 23 24
|
mpsyl |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( ~~>t ` J ) " ( A ^m NN ) ) ~<_ ( A ^m NN ) ) |
26 |
20 25
|
eqbrtrd |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |