Metamath Proof Explorer


Theorem hausnlly

Description: A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion hausnlly
|- ( J e. N-Locally Haus <-> J e. Locally Haus )

Proof

Step Hyp Ref Expression
1 resthaus
 |-  ( ( j e. Haus /\ x e. j ) -> ( j |`t x ) e. Haus )
2 1 adantl
 |-  ( ( T. /\ ( j e. Haus /\ x e. j ) ) -> ( j |`t x ) e. Haus )
3 2 restnlly
 |-  ( T. -> N-Locally Haus = Locally Haus )
4 3 mptru
 |-  N-Locally Haus = Locally Haus
5 4 eleq2i
 |-  ( J e. N-Locally Haus <-> J e. Locally Haus )