Step |
Hyp |
Ref |
Expression |
1 |
|
hauspwdom.1 |
|- X = U. J |
2 |
1
|
hausmapdom |
|- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |
3 |
2
|
adantr |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |
4 |
|
simprr |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> NN ~<_ B ) |
5 |
|
1nn |
|- 1 e. NN |
6 |
|
noel |
|- -. 1 e. (/) |
7 |
|
eleq2 |
|- ( NN = (/) -> ( 1 e. NN <-> 1 e. (/) ) ) |
8 |
6 7
|
mtbiri |
|- ( NN = (/) -> -. 1 e. NN ) |
9 |
8
|
adantr |
|- ( ( NN = (/) /\ A = (/) ) -> -. 1 e. NN ) |
10 |
5 9
|
mt2 |
|- -. ( NN = (/) /\ A = (/) ) |
11 |
|
mapdom2 |
|- ( ( NN ~<_ B /\ -. ( NN = (/) /\ A = (/) ) ) -> ( A ^m NN ) ~<_ ( A ^m B ) ) |
12 |
4 10 11
|
sylancl |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m NN ) ~<_ ( A ^m B ) ) |
13 |
|
sdomdom |
|- ( A ~< 2o -> A ~<_ 2o ) |
14 |
13
|
adantl |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> A ~<_ 2o ) |
15 |
|
mapdom1 |
|- ( A ~<_ 2o -> ( A ^m B ) ~<_ ( 2o ^m B ) ) |
16 |
14 15
|
syl |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( A ^m B ) ~<_ ( 2o ^m B ) ) |
17 |
|
reldom |
|- Rel ~<_ |
18 |
17
|
brrelex2i |
|- ( NN ~<_ B -> B e. _V ) |
19 |
18
|
ad2antll |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> B e. _V ) |
20 |
|
pw2eng |
|- ( B e. _V -> ~P B ~~ ( 2o ^m B ) ) |
21 |
|
ensym |
|- ( ~P B ~~ ( 2o ^m B ) -> ( 2o ^m B ) ~~ ~P B ) |
22 |
19 20 21
|
3syl |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( 2o ^m B ) ~~ ~P B ) |
23 |
22
|
adantr |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( 2o ^m B ) ~~ ~P B ) |
24 |
|
domentr |
|- ( ( ( A ^m B ) ~<_ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( A ^m B ) ~<_ ~P B ) |
25 |
16 23 24
|
syl2anc |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( A ^m B ) ~<_ ~P B ) |
26 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
27 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
28 |
26 27
|
eqsstri |
|- _om C_ Fin |
29 |
|
2onn |
|- 2o e. _om |
30 |
28 29
|
sselii |
|- 2o e. Fin |
31 |
|
simprl |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> A ~<_ ~P B ) |
32 |
17
|
brrelex1i |
|- ( A ~<_ ~P B -> A e. _V ) |
33 |
31 32
|
syl |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> A e. _V ) |
34 |
|
fidomtri |
|- ( ( 2o e. Fin /\ A e. _V ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
35 |
30 33 34
|
sylancr |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
36 |
35
|
biimpar |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ -. A ~< 2o ) -> 2o ~<_ A ) |
37 |
|
numth3 |
|- ( B e. _V -> B e. dom card ) |
38 |
19 37
|
syl |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> B e. dom card ) |
39 |
38
|
adantr |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> B e. dom card ) |
40 |
|
nnenom |
|- NN ~~ _om |
41 |
40
|
ensymi |
|- _om ~~ NN |
42 |
|
endomtr |
|- ( ( _om ~~ NN /\ NN ~<_ B ) -> _om ~<_ B ) |
43 |
41 4 42
|
sylancr |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> _om ~<_ B ) |
44 |
43
|
adantr |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> _om ~<_ B ) |
45 |
|
simpr |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> 2o ~<_ A ) |
46 |
31
|
adantr |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> A ~<_ ~P B ) |
47 |
|
mappwen |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |
48 |
39 44 45 46 47
|
syl22anc |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> ( A ^m B ) ~~ ~P B ) |
49 |
|
endom |
|- ( ( A ^m B ) ~~ ~P B -> ( A ^m B ) ~<_ ~P B ) |
50 |
48 49
|
syl |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> ( A ^m B ) ~<_ ~P B ) |
51 |
36 50
|
syldan |
|- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ -. A ~< 2o ) -> ( A ^m B ) ~<_ ~P B ) |
52 |
25 51
|
pm2.61dan |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m B ) ~<_ ~P B ) |
53 |
|
domtr |
|- ( ( ( A ^m NN ) ~<_ ( A ^m B ) /\ ( A ^m B ) ~<_ ~P B ) -> ( A ^m NN ) ~<_ ~P B ) |
54 |
12 52 53
|
syl2anc |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m NN ) ~<_ ~P B ) |
55 |
|
domtr |
|- ( ( ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) /\ ( A ^m NN ) ~<_ ~P B ) -> ( ( cls ` J ) ` A ) ~<_ ~P B ) |
56 |
3 54 55
|
syl2anc |
|- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( ( cls ` J ) ` A ) ~<_ ~P B ) |