Step |
Hyp |
Ref |
Expression |
1 |
|
tsmscl.b |
|- B = ( Base ` G ) |
2 |
|
tsmscl.1 |
|- ( ph -> G e. CMnd ) |
3 |
|
tsmscl.2 |
|- ( ph -> G e. TopSp ) |
4 |
|
tsmscl.a |
|- ( ph -> A e. V ) |
5 |
|
tsmscl.f |
|- ( ph -> F : A --> B ) |
6 |
|
haustsms.j |
|- J = ( TopOpen ` G ) |
7 |
|
haustsms.h |
|- ( ph -> J e. Haus ) |
8 |
|
simpr |
|- ( ( ph /\ X e. ( G tsums F ) ) -> X e. ( G tsums F ) ) |
9 |
1 2 3 4 5 6 7
|
haustsms |
|- ( ph -> E* x x e. ( G tsums F ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ X e. ( G tsums F ) ) -> E* x x e. ( G tsums F ) ) |
11 |
|
eleq1 |
|- ( x = X -> ( x e. ( G tsums F ) <-> X e. ( G tsums F ) ) ) |
12 |
11
|
moi2 |
|- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( x e. ( G tsums F ) /\ X e. ( G tsums F ) ) ) -> x = X ) |
13 |
12
|
ancom2s |
|- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( X e. ( G tsums F ) /\ x e. ( G tsums F ) ) ) -> x = X ) |
14 |
13
|
expr |
|- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) |
15 |
8 10 8 14
|
syl21anc |
|- ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) |
16 |
|
velsn |
|- ( x e. { X } <-> x = X ) |
17 |
15 16
|
syl6ibr |
|- ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x e. { X } ) ) |
18 |
17
|
ssrdv |
|- ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) C_ { X } ) |
19 |
|
snssi |
|- ( X e. ( G tsums F ) -> { X } C_ ( G tsums F ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ X e. ( G tsums F ) ) -> { X } C_ ( G tsums F ) ) |
21 |
18 20
|
eqssd |
|- ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) = { X } ) |
22 |
21
|
ex |
|- ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) ) |