| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmscl.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | tsmscl.1 |  |-  ( ph -> G e. CMnd ) | 
						
							| 3 |  | tsmscl.2 |  |-  ( ph -> G e. TopSp ) | 
						
							| 4 |  | tsmscl.a |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | tsmscl.f |  |-  ( ph -> F : A --> B ) | 
						
							| 6 |  | haustsms.j |  |-  J = ( TopOpen ` G ) | 
						
							| 7 |  | haustsms.h |  |-  ( ph -> J e. Haus ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> X e. ( G tsums F ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 | haustsms |  |-  ( ph -> E* x x e. ( G tsums F ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> E* x x e. ( G tsums F ) ) | 
						
							| 11 |  | eleq1 |  |-  ( x = X -> ( x e. ( G tsums F ) <-> X e. ( G tsums F ) ) ) | 
						
							| 12 | 11 | moi2 |  |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( x e. ( G tsums F ) /\ X e. ( G tsums F ) ) ) -> x = X ) | 
						
							| 13 | 12 | ancom2s |  |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( X e. ( G tsums F ) /\ x e. ( G tsums F ) ) ) -> x = X ) | 
						
							| 14 | 13 | expr |  |-  ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) | 
						
							| 15 | 8 10 8 14 | syl21anc |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) | 
						
							| 16 |  | velsn |  |-  ( x e. { X } <-> x = X ) | 
						
							| 17 | 15 16 | imbitrrdi |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x e. { X } ) ) | 
						
							| 18 | 17 | ssrdv |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) C_ { X } ) | 
						
							| 19 |  | snssi |  |-  ( X e. ( G tsums F ) -> { X } C_ ( G tsums F ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> { X } C_ ( G tsums F ) ) | 
						
							| 21 | 18 20 | eqssd |  |-  ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) = { X } ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) ) |