Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
hb3an
Metamath Proof Explorer
Description: If x is not free in ph , ps , and ch , it is not free in
( ph /\ ps /\ ch ) . (Contributed by NM , 14-Sep-2003) (Proof
shortened by Wolf Lammen , 2-Jan-2018)
Ref
Expression
Hypotheses
hb.1
|- ( ph -> A. x ph )
hb.2
|- ( ps -> A. x ps )
hb.3
|- ( ch -> A. x ch )
Assertion
hb3an
|- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )
Proof
Step
Hyp
Ref
Expression
1
hb.1
|- ( ph -> A. x ph )
2
hb.2
|- ( ps -> A. x ps )
3
hb.3
|- ( ch -> A. x ch )
4
1
nf5i
|- F/ x ph
5
2
nf5i
|- F/ x ps
6
3
nf5i
|- F/ x ch
7
4 5 6
nf3an
|- F/ x ( ph /\ ps /\ ch )
8
7
nf5ri
|- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )