Metamath Proof Explorer


Theorem hba1-o

Description: The setvar x is not free in A. x ph . Example in Appendix in Megill p. 450 (p. 19 of the preprint). Also Lemma 22 of Monk2 p. 114. (Contributed by NM, 24-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hba1-o
|- ( A. x ph -> A. x A. x ph )

Proof

Step Hyp Ref Expression
1 ax-c5
 |-  ( A. x -. A. x ph -> -. A. x ph )
2 1 con2i
 |-  ( A. x ph -> -. A. x -. A. x ph )
3 ax10fromc7
 |-  ( -. A. x -. A. x ph -> A. x -. A. x -. A. x ph )
4 ax10fromc7
 |-  ( -. A. x ph -> A. x -. A. x ph )
5 4 con1i
 |-  ( -. A. x -. A. x ph -> A. x ph )
6 5 alimi
 |-  ( A. x -. A. x -. A. x ph -> A. x A. x ph )
7 2 3 6 3syl
 |-  ( A. x ph -> A. x A. x ph )