Metamath Proof Explorer


Theorem hbab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995) Add disjoint variable condition to avoid ax-13 . See hbabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis hbab.1
|- ( ph -> A. x ph )
Assertion hbab
|- ( z e. { y | ph } -> A. x z e. { y | ph } )

Proof

Step Hyp Ref Expression
1 hbab.1
 |-  ( ph -> A. x ph )
2 df-clab
 |-  ( z e. { y | ph } <-> [ z / y ] ph )
3 1 hbsbw
 |-  ( [ z / y ] ph -> A. x [ z / y ] ph )
4 2 3 hbxfrbi
 |-  ( z e. { y | ph } -> A. x z e. { y | ph } )