Metamath Proof Explorer


Theorem hbabg

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . See hbab for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 1-Mar-1995) (New usage is discouraged.)

Ref Expression
Hypothesis hbabg.1
|- ( ph -> A. x ph )
Assertion hbabg
|- ( z e. { y | ph } -> A. x z e. { y | ph } )

Proof

Step Hyp Ref Expression
1 hbabg.1
 |-  ( ph -> A. x ph )
2 df-clab
 |-  ( z e. { y | ph } <-> [ z / y ] ph )
3 1 hbsb
 |-  ( [ z / y ] ph -> A. x [ z / y ] ph )
4 2 3 hbxfrbi
 |-  ( z e. { y | ph } -> A. x z e. { y | ph } )