Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hbal.1 | |- ( ph -> A. x ph ) |
|
Assertion | hbal | |- ( A. y ph -> A. x A. y ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbal.1 | |- ( ph -> A. x ph ) |
|
2 | 1 | alimi | |- ( A. y ph -> A. y A. x ph ) |
3 | ax-11 | |- ( A. y A. x ph -> A. x A. y ph ) |
|
4 | 2 3 | syl | |- ( A. y ph -> A. x A. y ph ) |