Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbal.1 | |- ( ph -> A. x ph ) |
|
| Assertion | hbal | |- ( A. y ph -> A. x A. y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbal.1 | |- ( ph -> A. x ph ) |
|
| 2 | 1 | alimi | |- ( A. y ph -> A. y A. x ph ) |
| 3 | ax-11 | |- ( A. y A. x ph -> A. x A. y ph ) |
|
| 4 | 2 3 | syl | |- ( A. y ph -> A. x A. y ph ) |