Metamath Proof Explorer


Theorem hbal

Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis hbal.1
|- ( ph -> A. x ph )
Assertion hbal
|- ( A. y ph -> A. x A. y ph )

Proof

Step Hyp Ref Expression
1 hbal.1
 |-  ( ph -> A. x ph )
2 1 alimi
 |-  ( A. y ph -> A. y A. x ph )
3 ax-11
 |-  ( A. y A. x ph -> A. x A. y ph )
4 2 3 syl
 |-  ( A. y ph -> A. x A. y ph )