Metamath Proof Explorer


Theorem hban

Description: If x is not free in ph and ps , it is not free in ( ph /\ ps ) . (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 2-Jan-2018)

Ref Expression
Hypotheses hb.1
|- ( ph -> A. x ph )
hb.2
|- ( ps -> A. x ps )
Assertion hban
|- ( ( ph /\ ps ) -> A. x ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 hb.1
 |-  ( ph -> A. x ph )
2 hb.2
 |-  ( ps -> A. x ps )
3 1 nf5i
 |-  F/ x ph
4 2 nf5i
 |-  F/ x ps
5 3 4 nfan
 |-  F/ x ( ph /\ ps )
6 5 nf5ri
 |-  ( ( ph /\ ps ) -> A. x ( ph /\ ps ) )