Description: If x is not free in ph and ps , it is not free in ( ph /\ ps ) . (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hb.1 | |- ( ph -> A. x ph ) |
|
hb.2 | |- ( ps -> A. x ps ) |
||
Assertion | hban | |- ( ( ph /\ ps ) -> A. x ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hb.1 | |- ( ph -> A. x ph ) |
|
2 | hb.2 | |- ( ps -> A. x ps ) |
|
3 | 1 | nf5i | |- F/ x ph |
4 | 2 | nf5i | |- F/ x ps |
5 | 3 4 | nfan | |- F/ x ( ph /\ ps ) |
6 | 5 | nf5ri | |- ( ( ph /\ ps ) -> A. x ( ph /\ ps ) ) |