Metamath Proof Explorer


Theorem hbe1a

Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)

Ref Expression
Assertion hbe1a
|- ( E. x A. x ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 df-ex
 |-  ( E. x A. x ph <-> -. A. x -. A. x ph )
2 hbn1
 |-  ( -. A. x ph -> A. x -. A. x ph )
3 2 con1i
 |-  ( -. A. x -. A. x ph -> A. x ph )
4 1 3 sylbi
 |-  ( E. x A. x ph -> A. x ph )