Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | hbe1a | |- ( E. x A. x ph -> A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex | |- ( E. x A. x ph <-> -. A. x -. A. x ph ) |
|
2 | hbn1 | |- ( -. A. x ph -> A. x -. A. x ph ) |
|
3 | 2 | con1i | |- ( -. A. x -. A. x ph -> A. x ph ) |
4 | 1 3 | sylbi | |- ( E. x A. x ph -> A. x ph ) |