Metamath Proof Explorer


Theorem hbe1w

Description: Weak version of hbe1 . See comments for ax10w . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypothesis hbn1w.1
|- ( x = y -> ( ph <-> ps ) )
Assertion hbe1w
|- ( E. x ph -> A. x E. x ph )

Proof

Step Hyp Ref Expression
1 hbn1w.1
 |-  ( x = y -> ( ph <-> ps ) )
2 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
3 1 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
4 3 hbn1w
 |-  ( -. A. x -. ph -> A. x -. A. x -. ph )
5 2 4 hbxfrbi
 |-  ( E. x ph -> A. x E. x ph )