Metamath Proof Explorer


Theorem hbex

Description: If x is not free in ph , then it is not free in E. y ph . (Contributed by NM, 12-Mar-1993) Reduce symbol count in nfex , hbex . (Revised by Wolf Lammen, 16-Oct-2021)

Ref Expression
Hypothesis hbex.1
|- ( ph -> A. x ph )
Assertion hbex
|- ( E. y ph -> A. x E. y ph )

Proof

Step Hyp Ref Expression
1 hbex.1
 |-  ( ph -> A. x ph )
2 1 nf5i
 |-  F/ x ph
3 2 nfex
 |-  F/ x E. y ph
4 3 nf5ri
 |-  ( E. y ph -> A. x E. y ph )