Description: A closed form of hbim . (Contributed by NM, 2-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hbim1.1 | |- ( ph -> A. x ph ) |
|
hbim1.2 | |- ( ph -> ( ps -> A. x ps ) ) |
||
Assertion | hbim1 | |- ( ( ph -> ps ) -> A. x ( ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbim1.1 | |- ( ph -> A. x ph ) |
|
2 | hbim1.2 | |- ( ph -> ( ps -> A. x ps ) ) |
|
3 | 2 | a2i | |- ( ( ph -> ps ) -> ( ph -> A. x ps ) ) |
4 | 1 | 19.21h | |- ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) |
5 | 3 4 | sylibr | |- ( ( ph -> ps ) -> A. x ( ph -> ps ) ) |