Metamath Proof Explorer


Theorem hbim1

Description: A closed form of hbim . (Contributed by NM, 2-Jun-1993)

Ref Expression
Hypotheses hbim1.1
|- ( ph -> A. x ph )
hbim1.2
|- ( ph -> ( ps -> A. x ps ) )
Assertion hbim1
|- ( ( ph -> ps ) -> A. x ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 hbim1.1
 |-  ( ph -> A. x ph )
2 hbim1.2
 |-  ( ph -> ( ps -> A. x ps ) )
3 2 a2i
 |-  ( ( ph -> ps ) -> ( ph -> A. x ps ) )
4 1 19.21h
 |-  ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) )
5 3 4 sylibr
 |-  ( ( ph -> ps ) -> A. x ( ph -> ps ) )