Metamath Proof Explorer


Theorem hbimg

Description: A more general form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Hypotheses hbg.1
|- ( ph -> A. x ps )
hbg.2
|- ( ch -> A. x th )
Assertion hbimg
|- ( ( ps -> ch ) -> A. x ( ph -> th ) )

Proof

Step Hyp Ref Expression
1 hbg.1
 |-  ( ph -> A. x ps )
2 hbg.2
 |-  ( ch -> A. x th )
3 1 ax-gen
 |-  A. x ( ph -> A. x ps )
4 hbimtg
 |-  ( ( A. x ( ph -> A. x ps ) /\ ( ch -> A. x th ) ) -> ( ( ps -> ch ) -> A. x ( ph -> th ) ) )
5 3 2 4 mp2an
 |-  ( ( ps -> ch ) -> A. x ( ph -> th ) )