Description: A more general form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hbg.1 | |- ( ph -> A. x ps ) |
|
hbg.2 | |- ( ch -> A. x th ) |
||
Assertion | hbimg | |- ( ( ps -> ch ) -> A. x ( ph -> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbg.1 | |- ( ph -> A. x ps ) |
|
2 | hbg.2 | |- ( ch -> A. x th ) |
|
3 | 1 | ax-gen | |- A. x ( ph -> A. x ps ) |
4 | hbimtg | |- ( ( A. x ( ph -> A. x ps ) /\ ( ch -> A. x th ) ) -> ( ( ps -> ch ) -> A. x ( ph -> th ) ) ) |
|
5 | 3 2 4 | mp2an | |- ( ( ps -> ch ) -> A. x ( ph -> th ) ) |