Metamath Proof Explorer


Theorem hblem

Description: Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993) (Revised by Andrew Salmon, 11-Jul-2011) Add disjoint variable condition to avoid ax-13 . See hblemg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis hblem.1
|- ( y e. A -> A. x y e. A )
Assertion hblem
|- ( z e. A -> A. x z e. A )

Proof

Step Hyp Ref Expression
1 hblem.1
 |-  ( y e. A -> A. x y e. A )
2 1 hbsbw
 |-  ( [ z / y ] y e. A -> A. x [ z / y ] y e. A )
3 clelsb1
 |-  ( [ z / y ] y e. A <-> z e. A )
4 3 albii
 |-  ( A. x [ z / y ] y e. A <-> A. x z e. A )
5 2 3 4 3imtr3i
 |-  ( z e. A -> A. x z e. A )