Metamath Proof Explorer


Theorem hblemg

Description: Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 . See hblem for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 21-Jun-1993) (Revised by Andrew Salmon, 11-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypothesis hblemg.1
|- ( y e. A -> A. x y e. A )
Assertion hblemg
|- ( z e. A -> A. x z e. A )

Proof

Step Hyp Ref Expression
1 hblemg.1
 |-  ( y e. A -> A. x y e. A )
2 1 hbsb
 |-  ( [ z / y ] y e. A -> A. x [ z / y ] y e. A )
3 clelsb1
 |-  ( [ z / y ] y e. A <-> z e. A )
4 3 albii
 |-  ( A. x [ z / y ] y e. A <-> A. x z e. A )
5 2 3 4 3imtr3i
 |-  ( z e. A -> A. x z e. A )