Metamath Proof Explorer


Theorem hbn

Description: If x is not free in ph , it is not free in -. ph . (Contributed by NM, 10-Jan-1993) (Proof shortened by Wolf Lammen, 17-Dec-2017)

Ref Expression
Hypothesis hbn.1
|- ( ph -> A. x ph )
Assertion hbn
|- ( -. ph -> A. x -. ph )

Proof

Step Hyp Ref Expression
1 hbn.1
 |-  ( ph -> A. x ph )
2 hbnt
 |-  ( A. x ( ph -> A. x ph ) -> ( -. ph -> A. x -. ph ) )
3 2 1 mpg
 |-  ( -. ph -> A. x -. ph )