Description: If x is not free in ph , it is not free in -. ph . (Contributed by NM, 10-Jan-1993) (Proof shortened by Wolf Lammen, 17-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hbn.1 | |- ( ph -> A. x ph ) |
|
Assertion | hbn | |- ( -. ph -> A. x -. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn.1 | |- ( ph -> A. x ph ) |
|
2 | hbnt | |- ( A. x ( ph -> A. x ph ) -> ( -. ph -> A. x -. ph ) ) |
|
3 | 2 1 | mpg | |- ( -. ph -> A. x -. ph ) |