Metamath Proof Explorer


Theorem hbn1fw

Description: Weak version of ax-10 from which we can prove any ax-10 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 28-Feb-2018)

Ref Expression
Hypotheses hbn1fw.1
|- ( A. x ph -> A. y A. x ph )
hbn1fw.2
|- ( -. ps -> A. x -. ps )
hbn1fw.3
|- ( A. y ps -> A. x A. y ps )
hbn1fw.4
|- ( -. ph -> A. y -. ph )
hbn1fw.5
|- ( -. A. y ps -> A. x -. A. y ps )
hbn1fw.6
|- ( x = y -> ( ph <-> ps ) )
Assertion hbn1fw
|- ( -. A. x ph -> A. x -. A. x ph )

Proof

Step Hyp Ref Expression
1 hbn1fw.1
 |-  ( A. x ph -> A. y A. x ph )
2 hbn1fw.2
 |-  ( -. ps -> A. x -. ps )
3 hbn1fw.3
 |-  ( A. y ps -> A. x A. y ps )
4 hbn1fw.4
 |-  ( -. ph -> A. y -. ph )
5 hbn1fw.5
 |-  ( -. A. y ps -> A. x -. A. y ps )
6 hbn1fw.6
 |-  ( x = y -> ( ph <-> ps ) )
7 1 2 3 4 6 cbvalw
 |-  ( A. x ph <-> A. y ps )
8 7 notbii
 |-  ( -. A. x ph <-> -. A. y ps )
9 8 5 hbxfrbi
 |-  ( -. A. x ph -> A. x -. A. x ph )