Description: Weak version of ax-10 from which we can prove any ax-10 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 28-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hbn1fw.1 | |- ( A. x ph -> A. y A. x ph ) |
|
hbn1fw.2 | |- ( -. ps -> A. x -. ps ) |
||
hbn1fw.3 | |- ( A. y ps -> A. x A. y ps ) |
||
hbn1fw.4 | |- ( -. ph -> A. y -. ph ) |
||
hbn1fw.5 | |- ( -. A. y ps -> A. x -. A. y ps ) |
||
hbn1fw.6 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | hbn1fw | |- ( -. A. x ph -> A. x -. A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1fw.1 | |- ( A. x ph -> A. y A. x ph ) |
|
2 | hbn1fw.2 | |- ( -. ps -> A. x -. ps ) |
|
3 | hbn1fw.3 | |- ( A. y ps -> A. x A. y ps ) |
|
4 | hbn1fw.4 | |- ( -. ph -> A. y -. ph ) |
|
5 | hbn1fw.5 | |- ( -. A. y ps -> A. x -. A. y ps ) |
|
6 | hbn1fw.6 | |- ( x = y -> ( ph <-> ps ) ) |
|
7 | 1 2 3 4 6 | cbvalw | |- ( A. x ph <-> A. y ps ) |
8 | 7 | notbii | |- ( -. A. x ph <-> -. A. y ps ) |
9 | 8 5 | hbxfrbi | |- ( -. A. x ph -> A. x -. A. x ph ) |