Metamath Proof Explorer


Theorem hbn1w

Description: Weak version of hbn1 . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017)

Ref Expression
Hypothesis hbn1w.1
|- ( x = y -> ( ph <-> ps ) )
Assertion hbn1w
|- ( -. A. x ph -> A. x -. A. x ph )

Proof

Step Hyp Ref Expression
1 hbn1w.1
 |-  ( x = y -> ( ph <-> ps ) )
2 ax-5
 |-  ( A. x ph -> A. y A. x ph )
3 ax-5
 |-  ( -. ps -> A. x -. ps )
4 ax-5
 |-  ( A. y ps -> A. x A. y ps )
5 ax-5
 |-  ( -. ph -> A. y -. ph )
6 ax-5
 |-  ( -. A. y ps -> A. x -. A. y ps )
7 2 3 4 5 6 1 hbn1fw
 |-  ( -. A. x ph -> A. x -. A. x ph )