Metamath Proof Explorer


Theorem hbnae

Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in Megill p. 446 (p. 14 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker hbnaev when possible. (Contributed by NM, 13-May-1993) (New usage is discouraged.)

Ref Expression
Assertion hbnae
|- ( -. A. x x = y -> A. z -. A. x x = y )

Proof

Step Hyp Ref Expression
1 hbae
 |-  ( A. x x = y -> A. z A. x x = y )
2 1 hbn
 |-  ( -. A. x x = y -> A. z -. A. x x = y )