Metamath Proof Explorer


Theorem hbng

Description: A more general form of hbn . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Hypothesis hbg.1
|- ( ph -> A. x ps )
Assertion hbng
|- ( -. ps -> A. x -. ph )

Proof

Step Hyp Ref Expression
1 hbg.1
 |-  ( ph -> A. x ps )
2 hbntg
 |-  ( A. x ( ph -> A. x ps ) -> ( -. ps -> A. x -. ph ) )
3 2 1 mpg
 |-  ( -. ps -> A. x -. ph )