Description: A more general form of hbn . (Contributed by Scott Fenton, 13-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hbg.1 | |- ( ph -> A. x ps ) |
|
Assertion | hbng | |- ( -. ps -> A. x -. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbg.1 | |- ( ph -> A. x ps ) |
|
2 | hbntg | |- ( A. x ( ph -> A. x ps ) -> ( -. ps -> A. x -. ph ) ) |
|
3 | 2 1 | mpg | |- ( -. ps -> A. x -. ph ) |