Metamath Proof Explorer


Theorem hbnt

Description: Closed theorem version of bound-variable hypothesis builder hbn . (Contributed by NM, 10-May-1993) (Proof shortened by Wolf Lammen, 14-Oct-2021)

Ref Expression
Assertion hbnt
|- ( A. x ( ph -> A. x ph ) -> ( -. ph -> A. x -. ph ) )

Proof

Step Hyp Ref Expression
1 nf5-1
 |-  ( A. x ( ph -> A. x ph ) -> F/ x ph )
2 1 nfnd
 |-  ( A. x ( ph -> A. x ph ) -> F/ x -. ph )
3 2 nf5rd
 |-  ( A. x ( ph -> A. x ph ) -> ( -. ph -> A. x -. ph ) )