Metamath Proof Explorer


Theorem hbsb2

Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-May-1993) (New usage is discouraged.)

Ref Expression
Assertion hbsb2
|- ( -. A. x x = y -> ( [ y / x ] ph -> A. x [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 sb4b
 |-  ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) )
2 sb2
 |-  ( A. x ( x = y -> ph ) -> [ y / x ] ph )
3 2 axc4i
 |-  ( A. x ( x = y -> ph ) -> A. x [ y / x ] ph )
4 1 3 syl6bi
 |-  ( -. A. x x = y -> ( [ y / x ] ph -> A. x [ y / x ] ph ) )