Metamath Proof Explorer


Theorem hbsbw

Description: If z is not free in ph , it is not free in [ y / x ] ph when y and z are distinct. Version of hbsb with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypothesis hbsbw.1
|- ( ph -> A. z ph )
Assertion hbsbw
|- ( [ y / x ] ph -> A. z [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 hbsbw.1
 |-  ( ph -> A. z ph )
2 df-sb
 |-  ( [ y / x ] ph <-> A. w ( w = y -> A. x ( x = w -> ph ) ) )
3 1 imim2i
 |-  ( ( x = w -> ph ) -> ( x = w -> A. z ph ) )
4 3 alimi
 |-  ( A. x ( x = w -> ph ) -> A. x ( x = w -> A. z ph ) )
5 19.21v
 |-  ( A. z ( x = w -> ph ) <-> ( x = w -> A. z ph ) )
6 5 biimpri
 |-  ( ( x = w -> A. z ph ) -> A. z ( x = w -> ph ) )
7 6 alimi
 |-  ( A. x ( x = w -> A. z ph ) -> A. x A. z ( x = w -> ph ) )
8 ax-11
 |-  ( A. x A. z ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) )
9 4 7 8 3syl
 |-  ( A. x ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) )
10 9 imim2i
 |-  ( ( w = y -> A. x ( x = w -> ph ) ) -> ( w = y -> A. z A. x ( x = w -> ph ) ) )
11 19.21v
 |-  ( A. z ( w = y -> A. x ( x = w -> ph ) ) <-> ( w = y -> A. z A. x ( x = w -> ph ) ) )
12 10 11 sylibr
 |-  ( ( w = y -> A. x ( x = w -> ph ) ) -> A. z ( w = y -> A. x ( x = w -> ph ) ) )
13 12 hbal
 |-  ( A. w ( w = y -> A. x ( x = w -> ph ) ) -> A. z A. w ( w = y -> A. x ( x = w -> ph ) ) )
14 2 13 hbxfrbi
 |-  ( [ y / x ] ph -> A. z [ y / x ] ph )