Metamath Proof Explorer


Theorem hbtlem3

Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses hbtlem.p
|- P = ( Poly1 ` R )
hbtlem.u
|- U = ( LIdeal ` P )
hbtlem.s
|- S = ( ldgIdlSeq ` R )
hbtlem3.r
|- ( ph -> R e. Ring )
hbtlem3.i
|- ( ph -> I e. U )
hbtlem3.j
|- ( ph -> J e. U )
hbtlem3.ij
|- ( ph -> I C_ J )
hbtlem3.x
|- ( ph -> X e. NN0 )
Assertion hbtlem3
|- ( ph -> ( ( S ` I ) ` X ) C_ ( ( S ` J ) ` X ) )

Proof

Step Hyp Ref Expression
1 hbtlem.p
 |-  P = ( Poly1 ` R )
2 hbtlem.u
 |-  U = ( LIdeal ` P )
3 hbtlem.s
 |-  S = ( ldgIdlSeq ` R )
4 hbtlem3.r
 |-  ( ph -> R e. Ring )
5 hbtlem3.i
 |-  ( ph -> I e. U )
6 hbtlem3.j
 |-  ( ph -> J e. U )
7 hbtlem3.ij
 |-  ( ph -> I C_ J )
8 hbtlem3.x
 |-  ( ph -> X e. NN0 )
9 ssrexv
 |-  ( I C_ J -> ( E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) -> E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) ) )
10 7 9 syl
 |-  ( ph -> ( E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) -> E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) ) )
11 10 ss2abdv
 |-  ( ph -> { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } C_ { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } )
12 eqid
 |-  ( deg1 ` R ) = ( deg1 ` R )
13 1 2 3 12 hbtlem1
 |-  ( ( R e. Ring /\ I e. U /\ X e. NN0 ) -> ( ( S ` I ) ` X ) = { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } )
14 4 5 8 13 syl3anc
 |-  ( ph -> ( ( S ` I ) ` X ) = { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } )
15 1 2 3 12 hbtlem1
 |-  ( ( R e. Ring /\ J e. U /\ X e. NN0 ) -> ( ( S ` J ) ` X ) = { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } )
16 4 6 8 15 syl3anc
 |-  ( ph -> ( ( S ` J ) ` X ) = { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } )
17 11 14 16 3sstr4d
 |-  ( ph -> ( ( S ` I ) ` X ) C_ ( ( S ` J ) ` X ) )