Metamath Proof Explorer


Theorem hbxfrbi

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses hbxfrbi.1
|- ( ph <-> ps )
hbxfrbi.2
|- ( ps -> A. x ps )
Assertion hbxfrbi
|- ( ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 hbxfrbi.1
 |-  ( ph <-> ps )
2 hbxfrbi.2
 |-  ( ps -> A. x ps )
3 1 albii
 |-  ( A. x ph <-> A. x ps )
4 2 1 3 3imtr4i
 |-  ( ph -> A. x ph )