Description: A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hcauseq | |- ( F e. Cauchy -> F : NN --> ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hcau | |- ( F e. Cauchy <-> ( F : NN --> ~H /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` y ) -h ( F ` z ) ) ) < x ) ) | |
| 2 | 1 | simplbi | |- ( F e. Cauchy -> F : NN --> ~H ) |