| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap14lem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap14lem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap14lem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap14lem1.t |
|- .x. = ( .s ` U ) |
| 5 |
|
hdmap14lem3.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
hdmap14lem1.r |
|- R = ( Scalar ` U ) |
| 7 |
|
hdmap14lem1.b |
|- B = ( Base ` R ) |
| 8 |
|
hdmap14lem1.z |
|- Z = ( 0g ` R ) |
| 9 |
|
hdmap14lem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 10 |
|
hdmap14lem2.e |
|- .xb = ( .s ` C ) |
| 11 |
|
hdmap14lem1.l |
|- L = ( LSpan ` C ) |
| 12 |
|
hdmap14lem2.p |
|- P = ( Scalar ` C ) |
| 13 |
|
hdmap14lem2.a |
|- A = ( Base ` P ) |
| 14 |
|
hdmap14lem2.q |
|- Q = ( 0g ` P ) |
| 15 |
|
hdmap14lem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 16 |
|
hdmap14lem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
hdmap14lem3.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
hdmap14lem1.f |
|- ( ph -> F e. ( B \ { Z } ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmap14lem1 |
|- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
| 20 |
19
|
eqcomd |
|- ( ph -> ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) ) |
| 21 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 22 |
1 9 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 23 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 24 |
18
|
eldifad |
|- ( ph -> F e. B ) |
| 25 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 26 |
3 6 4 7
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
| 27 |
23 24 25 26
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
| 28 |
1 2 3 9 21 15 16 27
|
hdmapcl |
|- ( ph -> ( S ` ( F .x. X ) ) e. ( Base ` C ) ) |
| 29 |
1 2 3 9 21 15 16 25
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` C ) ) |
| 30 |
21 12 13 14 10 11 22 28 29
|
lspsneq |
|- ( ph -> ( ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) <-> E. g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
| 31 |
20 30
|
mpbid |
|- ( ph -> E. g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |