| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1l6.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap1l6.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap1l6.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap1l6.p |
|- .+ = ( +g ` U ) |
| 5 |
|
hdmap1l6.s |
|- .- = ( -g ` U ) |
| 6 |
|
hdmap1l6c.o |
|- .0. = ( 0g ` U ) |
| 7 |
|
hdmap1l6.n |
|- N = ( LSpan ` U ) |
| 8 |
|
hdmap1l6.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 9 |
|
hdmap1l6.d |
|- D = ( Base ` C ) |
| 10 |
|
hdmap1l6.a |
|- .+b = ( +g ` C ) |
| 11 |
|
hdmap1l6.r |
|- R = ( -g ` C ) |
| 12 |
|
hdmap1l6.q |
|- Q = ( 0g ` C ) |
| 13 |
|
hdmap1l6.l |
|- L = ( LSpan ` C ) |
| 14 |
|
hdmap1l6.m |
|- M = ( ( mapd ` K ) ` W ) |
| 15 |
|
hdmap1l6.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
| 16 |
|
hdmap1l6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
hdmap1l6.f |
|- ( ph -> F e. D ) |
| 18 |
|
hdmap1l6cl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 19 |
|
hdmap1l6.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
| 20 |
|
hdmap1l6e.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 21 |
|
hdmap1l6e.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 22 |
|
hdmap1l6e.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 23 |
|
hdmap1l6.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 24 |
|
hdmap1l6.fg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
| 25 |
|
hdmap1l6.fe |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
| 26 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 27 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 28 |
18
|
eldifad |
|- ( ph -> X e. V ) |
| 29 |
20
|
eldifad |
|- ( ph -> Y e. V ) |
| 30 |
3 5
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
| 31 |
27 28 29 30
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
| 32 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
| 33 |
27 31 32
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
| 34 |
21
|
eldifad |
|- ( ph -> Z e. V ) |
| 35 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 36 |
27 34 35
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 37 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 38 |
26 37
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 39 |
27 33 36 38
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 40 |
3 5
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Z e. V ) -> ( X .- Z ) e. V ) |
| 41 |
27 28 34 40
|
syl3anc |
|- ( ph -> ( X .- Z ) e. V ) |
| 42 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Z ) e. V ) -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
| 43 |
27 41 42
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
| 44 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 45 |
27 29 44
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 46 |
26 37
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) /\ ( N ` { Y } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) ) |
| 47 |
27 43 45 46
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) ) |
| 48 |
1 14 2 26 16 39 47
|
mapdin |
|- ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) ) |
| 49 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
| 50 |
1 14 2 26 37 8 49 16 33 36
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
| 51 |
1 14 2 26 37 8 49 16 43 45
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) = ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) |
| 52 |
50 51
|
ineq12d |
|- ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) ) |
| 53 |
1 2 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 54 |
3 6 7 53 29 21 28 23 22
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
| 55 |
54
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 56 |
1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29
|
hdmap1cl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
| 57 |
24 56
|
eqeltrrd |
|- ( ph -> G e. D ) |
| 58 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19
|
hdmap1eq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |
| 59 |
24 58
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) |
| 60 |
59
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) |
| 61 |
3 6 7 53 20 34 28 23 22
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
| 62 |
61
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 63 |
1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34
|
hdmap1cl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
| 64 |
25 63
|
eqeltrrd |
|- ( ph -> E e. D ) |
| 65 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19
|
hdmap1eq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) ) |
| 66 |
25 65
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) |
| 67 |
66
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( L ` { E } ) ) |
| 68 |
60 67
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) ) |
| 69 |
66
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) |
| 70 |
59
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) |
| 71 |
69 70
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) = ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) |
| 72 |
68 71
|
ineq12d |
|- ( ph -> ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) |
| 73 |
52 72
|
eqtrd |
|- ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) |
| 74 |
48 73
|
eqtrd |
|- ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) |
| 75 |
3 5 6 37 7 53 28 22 23 20 21 4
|
baerlem5a |
|- ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) = ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) |
| 76 |
75
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) ) |
| 77 |
1 8 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 78 |
1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22
|
mapdindp |
|- ( ph -> -. F e. ( L ` { G , E } ) ) |
| 79 |
1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23
|
mapdncol |
|- ( ph -> ( L ` { G } ) =/= ( L ` { E } ) ) |
| 80 |
1 14 2 3 7 8 9 13 16 57 70 6 12 20
|
mapdn0 |
|- ( ph -> G e. ( D \ { Q } ) ) |
| 81 |
1 14 2 3 7 8 9 13 16 64 67 6 12 21
|
mapdn0 |
|- ( ph -> E e. ( D \ { Q } ) ) |
| 82 |
9 11 12 49 13 77 17 78 79 80 81 10
|
baerlem5a |
|- ( ph -> ( L ` { ( F R ( G .+b E ) ) } ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) |
| 83 |
74 76 82
|
3eqtr4d |
|- ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) ) |