| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapg.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapg.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapg.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapg.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 5 |
|
hdmapg.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 6 |
|
hdmapg.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
hdmapg.x |
|- ( ph -> X e. V ) |
| 8 |
|
hdmapg.y |
|- ( ph -> Y e. V ) |
| 9 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 11 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 12 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 13 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 14 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
| 15 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 16 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 17 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
| 18 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
| 19 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
| 20 |
1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8
|
hdmapglem7 |
|- ( ph -> ( G ` ( ( S ` Y ) ` X ) ) = ( ( S ` X ) ` Y ) ) |