| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapglem7.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapglem7.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 3 |
|
hdmapglem7.o |
|- O = ( ( ocH ` K ) ` W ) |
| 4 |
|
hdmapglem7.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
hdmapglem7.v |
|- V = ( Base ` U ) |
| 6 |
|
hdmapglem7.p |
|- .+ = ( +g ` U ) |
| 7 |
|
hdmapglem7.q |
|- .x. = ( .s ` U ) |
| 8 |
|
hdmapglem7.r |
|- R = ( Scalar ` U ) |
| 9 |
|
hdmapglem7.b |
|- B = ( Base ` R ) |
| 10 |
|
hdmapglem7.a |
|- .(+) = ( LSSum ` U ) |
| 11 |
|
hdmapglem7.n |
|- N = ( LSpan ` U ) |
| 12 |
|
hdmapglem7.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
hdmapglem7.x |
|- ( ph -> X e. V ) |
| 14 |
|
hdmapglem7.t |
|- .X. = ( .r ` R ) |
| 15 |
|
hdmapglem7.z |
|- .0. = ( 0g ` R ) |
| 16 |
|
hdmapglem7.c |
|- .+b = ( +g ` R ) |
| 17 |
|
hdmapglem7.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 18 |
|
hdmapglem7.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 19 |
|
hdmapglem7b.u |
|- ( ph -> x e. ( O ` { E } ) ) |
| 20 |
|
hdmapglem7b.v |
|- ( ph -> y e. ( O ` { E } ) ) |
| 21 |
|
hdmapglem7b.k |
|- ( ph -> m e. B ) |
| 22 |
|
hdmapglem7b.l |
|- ( ph -> n e. B ) |
| 23 |
1 4 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 24 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 25 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 26 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 27 |
1 24 25 4 5 26 2 12
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
| 28 |
27
|
eldifad |
|- ( ph -> E e. V ) |
| 29 |
5 8 7 9
|
lmodvscl |
|- ( ( U e. LMod /\ n e. B /\ E e. V ) -> ( n .x. E ) e. V ) |
| 30 |
23 22 28 29
|
syl3anc |
|- ( ph -> ( n .x. E ) e. V ) |
| 31 |
28
|
snssd |
|- ( ph -> { E } C_ V ) |
| 32 |
1 4 5 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) |
| 33 |
12 31 32
|
syl2anc |
|- ( ph -> ( O ` { E } ) C_ V ) |
| 34 |
33 20
|
sseldd |
|- ( ph -> y e. V ) |
| 35 |
5 6
|
lmodvacl |
|- ( ( U e. LMod /\ ( n .x. E ) e. V /\ y e. V ) -> ( ( n .x. E ) .+ y ) e. V ) |
| 36 |
23 30 34 35
|
syl3anc |
|- ( ph -> ( ( n .x. E ) .+ y ) e. V ) |
| 37 |
33 19
|
sseldd |
|- ( ph -> x e. V ) |
| 38 |
1 4 5 6 7 8 9 16 14 17 18 12 36 28 37 21
|
hdmapgln2 |
|- ( ph -> ( ( S ` ( ( m .x. E ) .+ x ) ) ` ( ( n .x. E ) .+ y ) ) = ( ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) .+b ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) ) ) |
| 39 |
1 4 5 6 7 8 9 16 14 17 12 28 34 28 22
|
hdmapln1 |
|- ( ph -> ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( ( S ` E ) ` E ) ) .+b ( ( S ` E ) ` y ) ) ) |
| 40 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
| 41 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 42 |
1 2 40 17 12 4 8 41
|
hdmapevec2 |
|- ( ph -> ( ( S ` E ) ` E ) = ( 1r ` R ) ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( n .X. ( ( S ` E ) ` E ) ) = ( n .X. ( 1r ` R ) ) ) |
| 44 |
8
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
| 45 |
23 44
|
syl |
|- ( ph -> R e. Ring ) |
| 46 |
9 14 41
|
ringridm |
|- ( ( R e. Ring /\ n e. B ) -> ( n .X. ( 1r ` R ) ) = n ) |
| 47 |
45 22 46
|
syl2anc |
|- ( ph -> ( n .X. ( 1r ` R ) ) = n ) |
| 48 |
43 47
|
eqtrd |
|- ( ph -> ( n .X. ( ( S ` E ) ` E ) ) = n ) |
| 49 |
1 2 3 4 5 8 9 14 15 17 12 20
|
hdmapinvlem1 |
|- ( ph -> ( ( S ` E ) ` y ) = .0. ) |
| 50 |
48 49
|
oveq12d |
|- ( ph -> ( ( n .X. ( ( S ` E ) ` E ) ) .+b ( ( S ` E ) ` y ) ) = ( n .+b .0. ) ) |
| 51 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 52 |
45 51
|
syl |
|- ( ph -> R e. Grp ) |
| 53 |
9 16 15
|
grprid |
|- ( ( R e. Grp /\ n e. B ) -> ( n .+b .0. ) = n ) |
| 54 |
52 22 53
|
syl2anc |
|- ( ph -> ( n .+b .0. ) = n ) |
| 55 |
39 50 54
|
3eqtrd |
|- ( ph -> ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) = n ) |
| 56 |
55
|
oveq1d |
|- ( ph -> ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) = ( n .X. ( G ` m ) ) ) |
| 57 |
1 4 5 6 7 8 9 16 14 17 12 28 34 37 22
|
hdmapln1 |
|- ( ph -> ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( ( S ` x ) ` E ) ) .+b ( ( S ` x ) ` y ) ) ) |
| 58 |
1 2 3 4 5 8 9 14 15 17 12 19
|
hdmapinvlem2 |
|- ( ph -> ( ( S ` x ) ` E ) = .0. ) |
| 59 |
58
|
oveq2d |
|- ( ph -> ( n .X. ( ( S ` x ) ` E ) ) = ( n .X. .0. ) ) |
| 60 |
9 14 15
|
ringrz |
|- ( ( R e. Ring /\ n e. B ) -> ( n .X. .0. ) = .0. ) |
| 61 |
45 22 60
|
syl2anc |
|- ( ph -> ( n .X. .0. ) = .0. ) |
| 62 |
59 61
|
eqtrd |
|- ( ph -> ( n .X. ( ( S ` x ) ` E ) ) = .0. ) |
| 63 |
62
|
oveq1d |
|- ( ph -> ( ( n .X. ( ( S ` x ) ` E ) ) .+b ( ( S ` x ) ` y ) ) = ( .0. .+b ( ( S ` x ) ` y ) ) ) |
| 64 |
1 4 5 8 9 17 12 34 37
|
hdmapipcl |
|- ( ph -> ( ( S ` x ) ` y ) e. B ) |
| 65 |
9 16 15
|
grplid |
|- ( ( R e. Grp /\ ( ( S ` x ) ` y ) e. B ) -> ( .0. .+b ( ( S ` x ) ` y ) ) = ( ( S ` x ) ` y ) ) |
| 66 |
52 64 65
|
syl2anc |
|- ( ph -> ( .0. .+b ( ( S ` x ) ` y ) ) = ( ( S ` x ) ` y ) ) |
| 67 |
57 63 66
|
3eqtrd |
|- ( ph -> ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) = ( ( S ` x ) ` y ) ) |
| 68 |
56 67
|
oveq12d |
|- ( ph -> ( ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) .+b ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) ) = ( ( n .X. ( G ` m ) ) .+b ( ( S ` x ) ` y ) ) ) |
| 69 |
38 68
|
eqtrd |
|- ( ph -> ( ( S ` ( ( m .x. E ) .+ x ) ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( G ` m ) ) .+b ( ( S ` x ) ` y ) ) ) |