| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapip0.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapip0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapip0.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapip0.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
hdmapip0.r |
|- R = ( Scalar ` U ) |
| 6 |
|
hdmapip0.z |
|- Z = ( 0g ` R ) |
| 7 |
|
hdmapip0.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 8 |
|
hdmapip0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
hdmapip0.x |
|- ( ph -> X e. V ) |
| 10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 11 |
8
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> ( K e. HL /\ W e. H ) ) |
| 12 |
9
|
anim1i |
|- ( ( ph /\ X =/= .0. ) -> ( X e. V /\ X =/= .0. ) ) |
| 13 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
| 14 |
12 13
|
sylibr |
|- ( ( ph /\ X =/= .0. ) -> X e. ( V \ { .0. } ) ) |
| 15 |
1 10 2 3 4 11 14
|
dochnel |
|- ( ( ph /\ X =/= .0. ) -> -. X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
| 16 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 17 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
| 18 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 19 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 20 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 21 |
1 2 3 19 20 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 22 |
1 19 20 2 16 8 21
|
lcdvbaselfl |
|- ( ph -> ( S ` X ) e. ( LFnl ` U ) ) |
| 23 |
3 5 6 16 17 18 22 9
|
ellkr2 |
|- ( ph -> ( X e. ( ( LKer ` U ) ` ( S ` X ) ) <-> ( ( S ` X ) ` X ) = Z ) ) |
| 24 |
23
|
biimpar |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( LKer ` U ) ` ( S ` X ) ) ) |
| 25 |
1 10 2 3 16 17 7 8 9
|
hdmaplkr |
|- ( ph -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
| 27 |
24 26
|
eleqtrd |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
| 28 |
27
|
ex |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) |
| 30 |
15 29
|
mtod |
|- ( ( ph /\ X =/= .0. ) -> -. ( ( S ` X ) ` X ) = Z ) |
| 31 |
30
|
neqned |
|- ( ( ph /\ X =/= .0. ) -> ( ( S ` X ) ` X ) =/= Z ) |
| 32 |
31
|
ex |
|- ( ph -> ( X =/= .0. -> ( ( S ` X ) ` X ) =/= Z ) ) |
| 33 |
32
|
necon4d |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z -> X = .0. ) ) |
| 34 |
33
|
imp |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X = .0. ) |
| 35 |
|
fveq2 |
|- ( X = .0. -> ( ( S ` X ) ` X ) = ( ( S ` X ) ` .0. ) ) |
| 36 |
5 6 4 16
|
lfl0 |
|- ( ( U e. LMod /\ ( S ` X ) e. ( LFnl ` U ) ) -> ( ( S ` X ) ` .0. ) = Z ) |
| 37 |
18 22 36
|
syl2anc |
|- ( ph -> ( ( S ` X ) ` .0. ) = Z ) |
| 38 |
35 37
|
sylan9eqr |
|- ( ( ph /\ X = .0. ) -> ( ( S ` X ) ` X ) = Z ) |
| 39 |
34 38
|
impbida |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z <-> X = .0. ) ) |