| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapip0com.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapip0com.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapip0com.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapip0com.r |
|- R = ( Scalar ` U ) |
| 5 |
|
hdmapip0com.z |
|- .0. = ( 0g ` R ) |
| 6 |
|
hdmapip0com.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 7 |
|
hdmapip0com.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
hdmapip0com.x |
|- ( ph -> X e. V ) |
| 9 |
|
hdmapip0com.y |
|- ( ph -> Y e. V ) |
| 10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 11 |
1 10 2 3 7 9 8
|
dochsncom |
|- ( ph -> ( Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) ) |
| 12 |
1 10 2 3 4 5 6 7 8 9
|
hdmapellkr |
|- ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) |
| 13 |
1 10 2 3 4 5 6 7 9 8
|
hdmapellkr |
|- ( ph -> ( ( ( S ` Y ) ` X ) = .0. <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) ) |
| 14 |
11 12 13
|
3bitr4d |
|- ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> ( ( S ` Y ) ` X ) = .0. ) ) |