| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapip1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapip1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapip1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapip1.t |
|- .x. = ( .s ` U ) |
| 5 |
|
hdmapip1.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
hdmapip1.r |
|- R = ( Scalar ` U ) |
| 7 |
|
hdmapip1.i |
|- .1. = ( 1r ` R ) |
| 8 |
|
hdmapip1.n |
|- N = ( invr ` R ) |
| 9 |
|
hdmapip1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 10 |
|
hdmapip1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
hdmapip1.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 12 |
|
hdmapip1.y |
|- Y = ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) |
| 13 |
12
|
fveq2i |
|- ( ( S ` X ) ` Y ) = ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) |
| 14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 16 |
11
|
eldifad |
|- ( ph -> X e. V ) |
| 17 |
1 2 10
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 18 |
6
|
lvecdrng |
|- ( U e. LVec -> R e. DivRing ) |
| 19 |
17 18
|
syl |
|- ( ph -> R e. DivRing ) |
| 20 |
1 2 3 6 14 9 10 16 16
|
hdmapipcl |
|- ( ph -> ( ( S ` X ) ` X ) e. ( Base ` R ) ) |
| 21 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
| 22 |
11 21
|
syl |
|- ( ph -> X =/= .0. ) |
| 23 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 24 |
1 2 3 5 6 23 9 10 16
|
hdmapip0 |
|- ( ph -> ( ( ( S ` X ) ` X ) = ( 0g ` R ) <-> X = .0. ) ) |
| 25 |
24
|
necon3bid |
|- ( ph -> ( ( ( S ` X ) ` X ) =/= ( 0g ` R ) <-> X =/= .0. ) ) |
| 26 |
22 25
|
mpbird |
|- ( ph -> ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) |
| 27 |
14 23 8
|
drnginvrcl |
|- ( ( R e. DivRing /\ ( ( S ` X ) ` X ) e. ( Base ` R ) /\ ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) -> ( N ` ( ( S ` X ) ` X ) ) e. ( Base ` R ) ) |
| 28 |
19 20 26 27
|
syl3anc |
|- ( ph -> ( N ` ( ( S ` X ) ` X ) ) e. ( Base ` R ) ) |
| 29 |
1 2 3 4 6 14 15 9 10 16 16 28
|
hdmaplnm1 |
|- ( ph -> ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) = ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) ) |
| 30 |
14 23 15 7 8
|
drnginvrl |
|- ( ( R e. DivRing /\ ( ( S ` X ) ` X ) e. ( Base ` R ) /\ ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) -> ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) = .1. ) |
| 31 |
19 20 26 30
|
syl3anc |
|- ( ph -> ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) = .1. ) |
| 32 |
29 31
|
eqtrd |
|- ( ph -> ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) = .1. ) |
| 33 |
13 32
|
eqtrid |
|- ( ph -> ( ( S ` X ) ` Y ) = .1. ) |