| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaplkr.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaplkr.o |
|- O = ( ( ocH ` K ) ` W ) |
| 3 |
|
hdmaplkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
hdmaplkr.v |
|- V = ( Base ` U ) |
| 5 |
|
hdmaplkr.f |
|- F = ( LFnl ` U ) |
| 6 |
|
hdmaplkr.y |
|- Y = ( LKer ` U ) |
| 7 |
|
hdmaplkr.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 8 |
|
hdmaplkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
hdmaplkr.x |
|- ( ph -> X e. V ) |
| 10 |
|
fveq2 |
|- ( X = ( 0g ` U ) -> ( S ` X ) = ( S ` ( 0g ` U ) ) ) |
| 11 |
10
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( Y ` ( S ` X ) ) = ( Y ` ( S ` ( 0g ` U ) ) ) ) |
| 12 |
|
sneq |
|- ( X = ( 0g ` U ) -> { X } = { ( 0g ` U ) } ) |
| 13 |
12
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( O ` { X } ) = ( O ` { ( 0g ` U ) } ) ) |
| 14 |
11 13
|
sseq12d |
|- ( X = ( 0g ` U ) -> ( ( Y ` ( S ` X ) ) C_ ( O ` { X } ) <-> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) ) |
| 15 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 16 |
1 15 8
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 17 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 18 |
1 3 4 15 17 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 19 |
|
eqid |
|- ( LSpan ` ( ( LCDual ` K ) ` W ) ) = ( LSpan ` ( ( LCDual ` K ) ` W ) ) |
| 20 |
17 19
|
lspsnid |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
| 21 |
16 18 20
|
syl2anc |
|- ( ph -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
| 22 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 23 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 24 |
1 3 4 22 15 19 23 7 8 9
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
| 25 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 26 |
1 2 23 3 4 22 25 6 8 9
|
mapdsn |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
| 27 |
24 26
|
eqtr3d |
|- ( ph -> ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
| 28 |
21 27
|
eleqtrd |
|- ( ph -> ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
| 29 |
1 15 17 3 25 8 18
|
lcdvbaselfl |
|- ( ph -> ( S ` X ) e. ( LFnl ` U ) ) |
| 30 |
|
fveq2 |
|- ( f = ( S ` X ) -> ( Y ` f ) = ( Y ` ( S ` X ) ) ) |
| 31 |
30
|
sseq2d |
|- ( f = ( S ` X ) -> ( ( O ` { X } ) C_ ( Y ` f ) <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
| 32 |
31
|
elrab3 |
|- ( ( S ` X ) e. ( LFnl ` U ) -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
| 33 |
29 32
|
syl |
|- ( ph -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
| 34 |
28 33
|
mpbid |
|- ( ph -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) |
| 36 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
| 37 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> U e. LVec ) |
| 39 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 40 |
8
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 41 |
9
|
anim1i |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( X e. V /\ X =/= ( 0g ` U ) ) ) |
| 42 |
|
eldifsn |
|- ( X e. ( V \ { ( 0g ` U ) } ) <-> ( X e. V /\ X =/= ( 0g ` U ) ) ) |
| 43 |
41 42
|
sylibr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> X e. ( V \ { ( 0g ` U ) } ) ) |
| 44 |
1 2 3 4 39 36 40 43
|
dochsnshp |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) e. ( LSHyp ` U ) ) |
| 45 |
29
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) e. ( LFnl ` U ) ) |
| 46 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 47 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
| 48 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
| 49 |
1 3 4 46 47 15 48 8
|
lcd0v |
|- ( ph -> ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
| 50 |
49
|
eqeq2d |
|- ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
| 51 |
1 3 4 39 15 48 7 8 9
|
hdmapeq0 |
|- ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> X = ( 0g ` U ) ) ) |
| 52 |
50 51
|
bitr3d |
|- ( ph -> ( ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X = ( 0g ` U ) ) ) |
| 53 |
52
|
necon3bid |
|- ( ph -> ( ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X =/= ( 0g ` U ) ) ) |
| 54 |
53
|
biimpar |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
| 55 |
4 46 47 36 25 6
|
lkrshp |
|- ( ( U e. LVec /\ ( S ` X ) e. ( LFnl ` U ) /\ ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) |
| 56 |
38 45 54 55
|
syl3anc |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) |
| 57 |
36 38 44 56
|
lshpcmp |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( ( O ` { X } ) C_ ( Y ` ( S ` X ) ) <-> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) ) |
| 58 |
35 57
|
mpbid |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) |
| 59 |
|
eqimss2 |
|- ( ( O ` { X } ) = ( Y ` ( S ` X ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
| 60 |
58 59
|
syl |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
| 61 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 62 |
4 39
|
lmod0vcl |
|- ( U e. LMod -> ( 0g ` U ) e. V ) |
| 63 |
61 62
|
syl |
|- ( ph -> ( 0g ` U ) e. V ) |
| 64 |
1 3 4 15 17 7 8 63
|
hdmapcl |
|- ( ph -> ( S ` ( 0g ` U ) ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 65 |
1 15 17 3 25 8 64
|
lcdvbaselfl |
|- ( ph -> ( S ` ( 0g ` U ) ) e. ( LFnl ` U ) ) |
| 66 |
4 25 6 61 65
|
lkrssv |
|- ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ V ) |
| 67 |
1 3 2 4 39
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( O ` { ( 0g ` U ) } ) = V ) |
| 68 |
8 67
|
syl |
|- ( ph -> ( O ` { ( 0g ` U ) } ) = V ) |
| 69 |
66 68
|
sseqtrrd |
|- ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) |
| 70 |
14 60 69
|
pm2.61ne |
|- ( ph -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
| 71 |
70 34
|
eqssd |
|- ( ph -> ( Y ` ( S ` X ) ) = ( O ` { X } ) ) |