| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
heibor1.3 |
|- ( ph -> D e. ( Met ` X ) ) |
| 3 |
|
heibor1.4 |
|- ( ph -> J e. Comp ) |
| 4 |
|
heibor1.5 |
|- ( ph -> F e. ( Cau ` D ) ) |
| 5 |
|
heibor1.6 |
|- ( ph -> F : NN --> X ) |
| 6 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 8 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
| 9 |
7 8
|
syl |
|- ( ph -> J e. Top ) |
| 10 |
|
imassrn |
|- ( F " u ) C_ ran F |
| 11 |
5
|
frnd |
|- ( ph -> ran F C_ X ) |
| 12 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
| 13 |
7 12
|
syl |
|- ( ph -> X = U. J ) |
| 14 |
11 13
|
sseqtrd |
|- ( ph -> ran F C_ U. J ) |
| 15 |
10 14
|
sstrid |
|- ( ph -> ( F " u ) C_ U. J ) |
| 16 |
|
eqid |
|- U. J = U. J |
| 17 |
16
|
clscld |
|- ( ( J e. Top /\ ( F " u ) C_ U. J ) -> ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) ) |
| 18 |
9 15 17
|
syl2anc |
|- ( ph -> ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) ) |
| 19 |
|
eleq1a |
|- ( ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) -> ( k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
| 21 |
20
|
rexlimdvw |
|- ( ph -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
| 22 |
21
|
abssdv |
|- ( ph -> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( Clsd ` J ) ) |
| 23 |
|
fvex |
|- ( Clsd ` J ) e. _V |
| 24 |
23
|
elpw2 |
|- ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) <-> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( Clsd ` J ) ) |
| 25 |
22 24
|
sylibr |
|- ( ph -> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) ) |
| 26 |
|
elin |
|- ( r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) <-> ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } /\ r e. Fin ) ) |
| 27 |
|
velpw |
|- ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> r C_ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 28 |
|
ssabral |
|- ( r C_ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 29 |
27 28
|
bitri |
|- ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 30 |
29
|
anbi1i |
|- ( ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } /\ r e. Fin ) <-> ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) |
| 31 |
26 30
|
bitri |
|- ( r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) <-> ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) |
| 32 |
|
raleq |
|- ( m = (/) -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 33 |
32
|
anbi2d |
|- ( m = (/) -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 34 |
|
inteq |
|- ( m = (/) -> |^| m = |^| (/) ) |
| 35 |
34
|
sseq2d |
|- ( m = (/) -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| (/) ) ) |
| 36 |
35
|
rexbidv |
|- ( m = (/) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) ) |
| 37 |
33 36
|
imbi12d |
|- ( m = (/) -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) ) ) |
| 38 |
|
raleq |
|- ( m = y -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 39 |
38
|
anbi2d |
|- ( m = y -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 40 |
|
inteq |
|- ( m = y -> |^| m = |^| y ) |
| 41 |
40
|
sseq2d |
|- ( m = y -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| y ) ) |
| 42 |
41
|
rexbidv |
|- ( m = y -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
| 43 |
39 42
|
imbi12d |
|- ( m = y -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) ) |
| 44 |
|
raleq |
|- ( m = ( y u. { n } ) -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 45 |
44
|
anbi2d |
|- ( m = ( y u. { n } ) -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 46 |
|
inteq |
|- ( m = ( y u. { n } ) -> |^| m = |^| ( y u. { n } ) ) |
| 47 |
46
|
sseq2d |
|- ( m = ( y u. { n } ) -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 48 |
47
|
rexbidv |
|- ( m = ( y u. { n } ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 49 |
45 48
|
imbi12d |
|- ( m = ( y u. { n } ) -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 50 |
|
raleq |
|- ( m = r -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 51 |
50
|
anbi2d |
|- ( m = r -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 52 |
|
inteq |
|- ( m = r -> |^| m = |^| r ) |
| 53 |
52
|
sseq2d |
|- ( m = r -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| r ) ) |
| 54 |
53
|
rexbidv |
|- ( m = r -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 55 |
51 54
|
imbi12d |
|- ( m = r -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) ) |
| 56 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
| 57 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
| 58 |
56 57
|
ax-mp |
|- ZZ>= Fn ZZ |
| 59 |
|
0z |
|- 0 e. ZZ |
| 60 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ 0 e. ZZ ) -> ( ZZ>= ` 0 ) e. ran ZZ>= ) |
| 61 |
58 59 60
|
mp2an |
|- ( ZZ>= ` 0 ) e. ran ZZ>= |
| 62 |
|
ssv |
|- ( F " ( ZZ>= ` 0 ) ) C_ _V |
| 63 |
|
int0 |
|- |^| (/) = _V |
| 64 |
62 63
|
sseqtrri |
|- ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) |
| 65 |
|
imaeq2 |
|- ( k = ( ZZ>= ` 0 ) -> ( F " k ) = ( F " ( ZZ>= ` 0 ) ) ) |
| 66 |
65
|
sseq1d |
|- ( k = ( ZZ>= ` 0 ) -> ( ( F " k ) C_ |^| (/) <-> ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) ) ) |
| 67 |
66
|
rspcev |
|- ( ( ( ZZ>= ` 0 ) e. ran ZZ>= /\ ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) |
| 68 |
61 64 67
|
mp2an |
|- E. k e. ran ZZ>= ( F " k ) C_ |^| (/) |
| 69 |
68
|
a1i |
|- ( ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) |
| 70 |
|
ssun1 |
|- y C_ ( y u. { n } ) |
| 71 |
|
ssralv |
|- ( y C_ ( y u. { n } ) -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 72 |
70 71
|
ax-mp |
|- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 73 |
72
|
anim2i |
|- ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 74 |
73
|
imim1i |
|- ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
| 75 |
|
ssun2 |
|- { n } C_ ( y u. { n } ) |
| 76 |
|
ssralv |
|- ( { n } C_ ( y u. { n } ) -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 77 |
75 76
|
ax-mp |
|- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 78 |
|
vex |
|- n e. _V |
| 79 |
|
eqeq1 |
|- ( k = n -> ( k = ( ( cls ` J ) ` ( F " u ) ) <-> n = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 80 |
79
|
rexbidv |
|- ( k = n -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 81 |
78 80
|
ralsn |
|- ( A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) |
| 82 |
77 81
|
sylib |
|- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) |
| 83 |
|
uzin2 |
|- ( ( u e. ran ZZ>= /\ k e. ran ZZ>= ) -> ( u i^i k ) e. ran ZZ>= ) |
| 84 |
10 11
|
sstrid |
|- ( ph -> ( F " u ) C_ X ) |
| 85 |
84 13
|
sseqtrd |
|- ( ph -> ( F " u ) C_ U. J ) |
| 86 |
16
|
sscls |
|- ( ( J e. Top /\ ( F " u ) C_ U. J ) -> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) |
| 87 |
9 85 86
|
syl2anc |
|- ( ph -> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) |
| 88 |
|
sseq2 |
|- ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( ( F " u ) C_ n <-> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 89 |
87 88
|
syl5ibrcom |
|- ( ph -> ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( F " u ) C_ n ) ) |
| 90 |
|
inss2 |
|- ( u i^i k ) C_ k |
| 91 |
|
inss1 |
|- ( u i^i k ) C_ u |
| 92 |
|
imass2 |
|- ( ( u i^i k ) C_ k -> ( F " ( u i^i k ) ) C_ ( F " k ) ) |
| 93 |
|
imass2 |
|- ( ( u i^i k ) C_ u -> ( F " ( u i^i k ) ) C_ ( F " u ) ) |
| 94 |
92 93
|
anim12i |
|- ( ( ( u i^i k ) C_ k /\ ( u i^i k ) C_ u ) -> ( ( F " ( u i^i k ) ) C_ ( F " k ) /\ ( F " ( u i^i k ) ) C_ ( F " u ) ) ) |
| 95 |
|
ssin |
|- ( ( ( F " ( u i^i k ) ) C_ ( F " k ) /\ ( F " ( u i^i k ) ) C_ ( F " u ) ) <-> ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) ) |
| 96 |
94 95
|
sylib |
|- ( ( ( u i^i k ) C_ k /\ ( u i^i k ) C_ u ) -> ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) ) |
| 97 |
90 91 96
|
mp2an |
|- ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) |
| 98 |
|
ss2in |
|- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( ( F " k ) i^i ( F " u ) ) C_ ( |^| y i^i n ) ) |
| 99 |
97 98
|
sstrid |
|- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( F " ( u i^i k ) ) C_ ( |^| y i^i n ) ) |
| 100 |
78
|
intunsn |
|- |^| ( y u. { n } ) = ( |^| y i^i n ) |
| 101 |
99 100
|
sseqtrrdi |
|- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) |
| 102 |
101
|
expcom |
|- ( ( F " u ) C_ n -> ( ( F " k ) C_ |^| y -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 103 |
89 102
|
syl6 |
|- ( ph -> ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( ( F " k ) C_ |^| y -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) ) |
| 104 |
103
|
impd |
|- ( ph -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 105 |
|
imaeq2 |
|- ( m = ( u i^i k ) -> ( F " m ) = ( F " ( u i^i k ) ) ) |
| 106 |
105
|
sseq1d |
|- ( m = ( u i^i k ) -> ( ( F " m ) C_ |^| ( y u. { n } ) <-> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 107 |
106
|
rspcev |
|- ( ( ( u i^i k ) e. ran ZZ>= /\ ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) |
| 108 |
107
|
expcom |
|- ( ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) -> ( ( u i^i k ) e. ran ZZ>= -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) |
| 109 |
104 108
|
syl6 |
|- ( ph -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> ( ( u i^i k ) e. ran ZZ>= -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 110 |
109
|
com23 |
|- ( ph -> ( ( u i^i k ) e. ran ZZ>= -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 111 |
83 110
|
syl5 |
|- ( ph -> ( ( u e. ran ZZ>= /\ k e. ran ZZ>= ) -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 112 |
111
|
rexlimdvv |
|- ( ph -> ( E. u e. ran ZZ>= E. k e. ran ZZ>= ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) |
| 113 |
|
reeanv |
|- ( E. u e. ran ZZ>= E. k e. ran ZZ>= ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) <-> ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) /\ E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
| 114 |
|
imaeq2 |
|- ( m = k -> ( F " m ) = ( F " k ) ) |
| 115 |
114
|
sseq1d |
|- ( m = k -> ( ( F " m ) C_ |^| ( y u. { n } ) <-> ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 116 |
115
|
cbvrexvw |
|- ( E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) <-> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) |
| 117 |
112 113 116
|
3imtr3g |
|- ( ph -> ( ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) /\ E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 118 |
117
|
expd |
|- ( ph -> ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 119 |
82 118
|
syl5 |
|- ( ph -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 120 |
119
|
imp |
|- ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 121 |
74 120
|
sylcom |
|- ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 122 |
121
|
a1i |
|- ( y e. Fin -> ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 123 |
37 43 49 55 69 122
|
findcard2 |
|- ( r e. Fin -> ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 124 |
123
|
com12 |
|- ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( r e. Fin -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 125 |
124
|
impr |
|- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) |
| 126 |
5
|
ffnd |
|- ( ph -> F Fn NN ) |
| 127 |
|
inss1 |
|- ( k i^i NN ) C_ k |
| 128 |
|
imass2 |
|- ( ( k i^i NN ) C_ k -> ( F " ( k i^i NN ) ) C_ ( F " k ) ) |
| 129 |
127 128
|
ax-mp |
|- ( F " ( k i^i NN ) ) C_ ( F " k ) |
| 130 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 131 |
|
1z |
|- 1 e. ZZ |
| 132 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ 1 e. ZZ ) -> ( ZZ>= ` 1 ) e. ran ZZ>= ) |
| 133 |
58 131 132
|
mp2an |
|- ( ZZ>= ` 1 ) e. ran ZZ>= |
| 134 |
130 133
|
eqeltri |
|- NN e. ran ZZ>= |
| 135 |
|
uzin2 |
|- ( ( k e. ran ZZ>= /\ NN e. ran ZZ>= ) -> ( k i^i NN ) e. ran ZZ>= ) |
| 136 |
134 135
|
mpan2 |
|- ( k e. ran ZZ>= -> ( k i^i NN ) e. ran ZZ>= ) |
| 137 |
|
uzn0 |
|- ( ( k i^i NN ) e. ran ZZ>= -> ( k i^i NN ) =/= (/) ) |
| 138 |
136 137
|
syl |
|- ( k e. ran ZZ>= -> ( k i^i NN ) =/= (/) ) |
| 139 |
|
n0 |
|- ( ( k i^i NN ) =/= (/) <-> E. y y e. ( k i^i NN ) ) |
| 140 |
138 139
|
sylib |
|- ( k e. ran ZZ>= -> E. y y e. ( k i^i NN ) ) |
| 141 |
|
fnfun |
|- ( F Fn NN -> Fun F ) |
| 142 |
|
inss2 |
|- ( k i^i NN ) C_ NN |
| 143 |
|
fndm |
|- ( F Fn NN -> dom F = NN ) |
| 144 |
142 143
|
sseqtrrid |
|- ( F Fn NN -> ( k i^i NN ) C_ dom F ) |
| 145 |
|
funfvima2 |
|- ( ( Fun F /\ ( k i^i NN ) C_ dom F ) -> ( y e. ( k i^i NN ) -> ( F ` y ) e. ( F " ( k i^i NN ) ) ) ) |
| 146 |
141 144 145
|
syl2anc |
|- ( F Fn NN -> ( y e. ( k i^i NN ) -> ( F ` y ) e. ( F " ( k i^i NN ) ) ) ) |
| 147 |
|
ne0i |
|- ( ( F ` y ) e. ( F " ( k i^i NN ) ) -> ( F " ( k i^i NN ) ) =/= (/) ) |
| 148 |
146 147
|
syl6 |
|- ( F Fn NN -> ( y e. ( k i^i NN ) -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 149 |
148
|
exlimdv |
|- ( F Fn NN -> ( E. y y e. ( k i^i NN ) -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 150 |
140 149
|
syl5 |
|- ( F Fn NN -> ( k e. ran ZZ>= -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 151 |
150
|
imp |
|- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( F " ( k i^i NN ) ) =/= (/) ) |
| 152 |
|
ssn0 |
|- ( ( ( F " ( k i^i NN ) ) C_ ( F " k ) /\ ( F " ( k i^i NN ) ) =/= (/) ) -> ( F " k ) =/= (/) ) |
| 153 |
129 151 152
|
sylancr |
|- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( F " k ) =/= (/) ) |
| 154 |
|
ssn0 |
|- ( ( ( F " k ) C_ |^| r /\ ( F " k ) =/= (/) ) -> |^| r =/= (/) ) |
| 155 |
154
|
expcom |
|- ( ( F " k ) =/= (/) -> ( ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 156 |
153 155
|
syl |
|- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 157 |
156
|
rexlimdva |
|- ( F Fn NN -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 158 |
126 157
|
syl |
|- ( ph -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 160 |
125 159
|
mpd |
|- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> |^| r =/= (/) ) |
| 161 |
160
|
necomd |
|- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> (/) =/= |^| r ) |
| 162 |
161
|
neneqd |
|- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> -. (/) = |^| r ) |
| 163 |
31 162
|
sylan2b |
|- ( ( ph /\ r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) ) -> -. (/) = |^| r ) |
| 164 |
163
|
nrexdv |
|- ( ph -> -. E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) |
| 165 |
|
0ex |
|- (/) e. _V |
| 166 |
|
zex |
|- ZZ e. _V |
| 167 |
166
|
pwex |
|- ~P ZZ e. _V |
| 168 |
|
frn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
| 169 |
56 168
|
ax-mp |
|- ran ZZ>= C_ ~P ZZ |
| 170 |
167 169
|
ssexi |
|- ran ZZ>= e. _V |
| 171 |
170
|
abrexex |
|- { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. _V |
| 172 |
|
elfi |
|- ( ( (/) e. _V /\ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. _V ) -> ( (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) <-> E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) ) |
| 173 |
165 171 172
|
mp2an |
|- ( (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) <-> E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) |
| 174 |
164 173
|
sylnibr |
|- ( ph -> -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
| 175 |
|
cmptop |
|- ( J e. Comp -> J e. Top ) |
| 176 |
|
cmpfi |
|- ( J e. Top -> ( J e. Comp <-> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) ) |
| 177 |
175 176
|
syl |
|- ( J e. Comp -> ( J e. Comp <-> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) ) |
| 178 |
177
|
ibi |
|- ( J e. Comp -> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) |
| 179 |
|
fveq2 |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( fi ` m ) = ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
| 180 |
179
|
eleq2d |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( (/) e. ( fi ` m ) <-> (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 181 |
180
|
notbid |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( -. (/) e. ( fi ` m ) <-> -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 182 |
|
inteq |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> |^| m = |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 183 |
182
|
neeq1d |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( |^| m =/= (/) <-> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } =/= (/) ) ) |
| 184 |
|
n0 |
|- ( |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } =/= (/) <-> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 185 |
183 184
|
bitrdi |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( |^| m =/= (/) <-> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
| 186 |
181 185
|
imbi12d |
|- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) <-> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 187 |
186
|
rspccv |
|- ( A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) -> ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) -> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 188 |
178 187
|
syl |
|- ( J e. Comp -> ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) -> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 189 |
3 25 174 188
|
syl3c |
|- ( ph -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 190 |
|
lmrel |
|- Rel ( ~~>t ` J ) |
| 191 |
|
r19.23v |
|- ( A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 192 |
191
|
albii |
|- ( A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. k ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 193 |
|
fvex |
|- ( ( cls ` J ) ` ( F " u ) ) e. _V |
| 194 |
|
eleq2 |
|- ( k = ( ( cls ` J ) ` ( F " u ) ) -> ( y e. k <-> y e. ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 195 |
193 194
|
ceqsalv |
|- ( A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> y e. ( ( cls ` J ) ` ( F " u ) ) ) |
| 196 |
195
|
ralbii |
|- ( A. u e. ran ZZ>= A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) |
| 197 |
|
ralcom4 |
|- ( A. u e. ran ZZ>= A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 198 |
196 197
|
bitr3i |
|- ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) <-> A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 199 |
|
vex |
|- y e. _V |
| 200 |
199
|
elintab |
|- ( y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 201 |
192 198 200
|
3bitr4i |
|- ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) <-> y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 202 |
|
eqid |
|- ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " NN ) ) |
| 203 |
|
imaeq2 |
|- ( u = NN -> ( F " u ) = ( F " NN ) ) |
| 204 |
203
|
fveq2d |
|- ( u = NN -> ( ( cls ` J ) ` ( F " u ) ) = ( ( cls ` J ) ` ( F " NN ) ) ) |
| 205 |
204
|
rspceeqv |
|- ( ( NN e. ran ZZ>= /\ ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " NN ) ) ) -> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) |
| 206 |
134 202 205
|
mp2an |
|- E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) |
| 207 |
|
fvex |
|- ( ( cls ` J ) ` ( F " NN ) ) e. _V |
| 208 |
|
eqeq1 |
|- ( k = ( ( cls ` J ) ` ( F " NN ) ) -> ( k = ( ( cls ` J ) ` ( F " u ) ) <-> ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 209 |
208
|
rexbidv |
|- ( k = ( ( cls ` J ) ` ( F " NN ) ) -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 210 |
207 209
|
elab |
|- ( ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) |
| 211 |
206 210
|
mpbir |
|- ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } |
| 212 |
|
intss1 |
|- ( ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( ( cls ` J ) ` ( F " NN ) ) ) |
| 213 |
211 212
|
ax-mp |
|- |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( ( cls ` J ) ` ( F " NN ) ) |
| 214 |
|
imassrn |
|- ( F " NN ) C_ ran F |
| 215 |
214 14
|
sstrid |
|- ( ph -> ( F " NN ) C_ U. J ) |
| 216 |
16
|
clsss3 |
|- ( ( J e. Top /\ ( F " NN ) C_ U. J ) -> ( ( cls ` J ) ` ( F " NN ) ) C_ U. J ) |
| 217 |
9 215 216
|
syl2anc |
|- ( ph -> ( ( cls ` J ) ` ( F " NN ) ) C_ U. J ) |
| 218 |
217 13
|
sseqtrrd |
|- ( ph -> ( ( cls ` J ) ` ( F " NN ) ) C_ X ) |
| 219 |
213 218
|
sstrid |
|- ( ph -> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ X ) |
| 220 |
219
|
sselda |
|- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> y e. X ) |
| 221 |
201 220
|
sylan2b |
|- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> y e. X ) |
| 222 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 223 |
130 7 222
|
iscau3 |
|- ( ph -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) ) ) |
| 224 |
4 223
|
mpbid |
|- ( ph -> ( F e. ( X ^pm CC ) /\ A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) ) |
| 225 |
224
|
simprd |
|- ( ph -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) |
| 226 |
|
simp3 |
|- ( ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 227 |
226
|
ralimi |
|- ( A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 228 |
227
|
reximi |
|- ( E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 229 |
228
|
ralimi |
|- ( A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 230 |
225 229
|
syl |
|- ( ph -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 231 |
230
|
adantr |
|- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 232 |
|
rphalfcl |
|- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
| 233 |
|
breq2 |
|- ( y = ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) < y <-> ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
| 234 |
233
|
2ralbidv |
|- ( y = ( r / 2 ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y <-> A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
| 235 |
234
|
rexbidv |
|- ( y = ( r / 2 ) -> ( E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y <-> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
| 236 |
235
|
rspccva |
|- ( ( A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y /\ ( r / 2 ) e. RR+ ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) |
| 237 |
231 232 236
|
syl2an |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) |
| 238 |
5
|
ffund |
|- ( ph -> Fun F ) |
| 239 |
238
|
ad2antrr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> Fun F ) |
| 240 |
9
|
ad2antrr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> J e. Top ) |
| 241 |
|
imassrn |
|- ( F " ( ZZ>= ` m ) ) C_ ran F |
| 242 |
241 14
|
sstrid |
|- ( ph -> ( F " ( ZZ>= ` m ) ) C_ U. J ) |
| 243 |
242
|
ad2antrr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( F " ( ZZ>= ` m ) ) C_ U. J ) |
| 244 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
| 245 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ m e. ZZ ) -> ( ZZ>= ` m ) e. ran ZZ>= ) |
| 246 |
58 244 245
|
sylancr |
|- ( m e. NN -> ( ZZ>= ` m ) e. ran ZZ>= ) |
| 247 |
246
|
ad2antll |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ZZ>= ` m ) e. ran ZZ>= ) |
| 248 |
|
simplr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) |
| 249 |
|
imaeq2 |
|- ( u = ( ZZ>= ` m ) -> ( F " u ) = ( F " ( ZZ>= ` m ) ) ) |
| 250 |
249
|
fveq2d |
|- ( u = ( ZZ>= ` m ) -> ( ( cls ` J ) ` ( F " u ) ) = ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) |
| 251 |
250
|
eleq2d |
|- ( u = ( ZZ>= ` m ) -> ( y e. ( ( cls ` J ) ` ( F " u ) ) <-> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) ) |
| 252 |
251
|
rspcv |
|- ( ( ZZ>= ` m ) e. ran ZZ>= -> ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) -> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) ) |
| 253 |
247 248 252
|
sylc |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) |
| 254 |
7
|
ad2antrr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> D e. ( *Met ` X ) ) |
| 255 |
221
|
adantr |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. X ) |
| 256 |
232
|
ad2antrl |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( r / 2 ) e. RR+ ) |
| 257 |
256
|
rpxrd |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( r / 2 ) e. RR* ) |
| 258 |
1
|
blopn |
|- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( r / 2 ) e. RR* ) -> ( y ( ball ` D ) ( r / 2 ) ) e. J ) |
| 259 |
254 255 257 258
|
syl3anc |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( y ( ball ` D ) ( r / 2 ) ) e. J ) |
| 260 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( r / 2 ) e. RR+ ) -> y e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 261 |
254 255 256 260
|
syl3anc |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 262 |
16
|
clsndisj |
|- ( ( ( J e. Top /\ ( F " ( ZZ>= ` m ) ) C_ U. J /\ y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) /\ ( ( y ( ball ` D ) ( r / 2 ) ) e. J /\ y e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) ) |
| 263 |
240 243 253 259 261 262
|
syl32anc |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) ) |
| 264 |
|
n0 |
|- ( ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) <-> E. n n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) |
| 265 |
|
inss2 |
|- ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) C_ ( F " ( ZZ>= ` m ) ) |
| 266 |
265
|
sseli |
|- ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> n e. ( F " ( ZZ>= ` m ) ) ) |
| 267 |
|
fvelima |
|- ( ( Fun F /\ n e. ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) = n ) |
| 268 |
266 267
|
sylan2 |
|- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) = n ) |
| 269 |
|
inss1 |
|- ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) C_ ( y ( ball ` D ) ( r / 2 ) ) |
| 270 |
269
|
sseli |
|- ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> n e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 271 |
270
|
adantl |
|- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> n e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 272 |
|
eleq1a |
|- ( n e. ( y ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) = n -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 273 |
271 272
|
syl |
|- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> ( ( F ` k ) = n -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 274 |
273
|
reximdv |
|- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> ( E. k e. ( ZZ>= ` m ) ( F ` k ) = n -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 275 |
268 274
|
mpd |
|- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 276 |
275
|
ex |
|- ( Fun F -> ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 277 |
276
|
exlimdv |
|- ( Fun F -> ( E. n n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 278 |
264 277
|
biimtrid |
|- ( Fun F -> ( ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 279 |
239 263 278
|
sylc |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 280 |
|
r19.29 |
|- ( ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 281 |
|
uznnssnn |
|- ( m e. NN -> ( ZZ>= ` m ) C_ NN ) |
| 282 |
281
|
ad2antll |
|- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ZZ>= ` m ) C_ NN ) |
| 283 |
|
simprlr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 284 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> D e. ( *Met ` X ) ) |
| 285 |
|
simplrl |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. RR+ ) |
| 286 |
285 232
|
syl |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR+ ) |
| 287 |
286
|
rpxrd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR* ) |
| 288 |
|
simpllr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> y e. X ) |
| 289 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> F : NN --> X ) |
| 290 |
|
eluznn |
|- ( ( m e. NN /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
| 291 |
290
|
ad2ant2lr |
|- ( ( ( r e. RR+ /\ m e. NN ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> k e. NN ) |
| 292 |
291
|
ad2ant2lr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> k e. NN ) |
| 293 |
289 292
|
ffvelcdmd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. X ) |
| 294 |
|
elbl3 |
|- ( ( ( D e. ( *Met ` X ) /\ ( r / 2 ) e. RR* ) /\ ( y e. X /\ ( F ` k ) e. X ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) <-> ( ( F ` k ) D y ) < ( r / 2 ) ) ) |
| 295 |
284 287 288 293 294
|
syl22anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) <-> ( ( F ` k ) D y ) < ( r / 2 ) ) ) |
| 296 |
283 295
|
mpbid |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D y ) < ( r / 2 ) ) |
| 297 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> D e. ( Met ` X ) ) |
| 298 |
|
simprr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> n e. ( ZZ>= ` k ) ) |
| 299 |
|
eluznn |
|- ( ( k e. NN /\ n e. ( ZZ>= ` k ) ) -> n e. NN ) |
| 300 |
292 298 299
|
syl2anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> n e. NN ) |
| 301 |
289 300
|
ffvelcdmd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` n ) e. X ) |
| 302 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` k ) D ( F ` n ) ) e. RR ) |
| 303 |
297 293 301 302
|
syl3anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` n ) ) e. RR ) |
| 304 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ y e. X ) -> ( ( F ` k ) D y ) e. RR ) |
| 305 |
297 293 288 304
|
syl3anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D y ) e. RR ) |
| 306 |
286
|
rpred |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR ) |
| 307 |
|
lt2add |
|- ( ( ( ( ( F ` k ) D ( F ` n ) ) e. RR /\ ( ( F ` k ) D y ) e. RR ) /\ ( ( r / 2 ) e. RR /\ ( r / 2 ) e. RR ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( ( F ` k ) D y ) < ( r / 2 ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
| 308 |
303 305 306 306 307
|
syl22anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( ( F ` k ) D y ) < ( r / 2 ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
| 309 |
296 308
|
mpan2d |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
| 310 |
285
|
rpcnd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. CC ) |
| 311 |
310
|
2halvesd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( r / 2 ) + ( r / 2 ) ) = r ) |
| 312 |
311
|
breq2d |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) <-> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) ) |
| 313 |
309 312
|
sylibd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) ) |
| 314 |
|
mettri2 |
|- ( ( D e. ( Met ` X ) /\ ( ( F ` k ) e. X /\ ( F ` n ) e. X /\ y e. X ) ) -> ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) ) |
| 315 |
297 293 301 288 314
|
syl13anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) ) |
| 316 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` n ) e. X /\ y e. X ) -> ( ( F ` n ) D y ) e. RR ) |
| 317 |
297 301 288 316
|
syl3anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` n ) D y ) e. RR ) |
| 318 |
303 305
|
readdcld |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) e. RR ) |
| 319 |
285
|
rpred |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. RR ) |
| 320 |
|
lelttr |
|- ( ( ( ( F ` n ) D y ) e. RR /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) e. RR /\ r e. RR ) -> ( ( ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) -> ( ( F ` n ) D y ) < r ) ) |
| 321 |
317 318 319 320
|
syl3anc |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) -> ( ( F ` n ) D y ) < r ) ) |
| 322 |
315 321
|
mpand |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r -> ( ( F ` n ) D y ) < r ) ) |
| 323 |
313 322
|
syld |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` n ) D y ) < r ) ) |
| 324 |
323
|
anassrs |
|- ( ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) /\ n e. ( ZZ>= ` k ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` n ) D y ) < r ) ) |
| 325 |
324
|
ralimdva |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 326 |
325
|
expr |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 327 |
326
|
com23 |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 328 |
327
|
impd |
|- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 329 |
328
|
reximdva |
|- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 330 |
|
ssrexv |
|- ( ( ZZ>= ` m ) C_ NN -> ( E. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 331 |
282 329 330
|
sylsyld |
|- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 332 |
221 331
|
syldanl |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 333 |
280 332
|
syl5 |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 334 |
279 333
|
mpan2d |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 335 |
334
|
anassrs |
|- ( ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) /\ m e. NN ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 336 |
335
|
rexlimdva |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> ( E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 337 |
237 336
|
mpd |
|- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) |
| 338 |
337
|
ralrimiva |
|- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) |
| 339 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) |
| 340 |
1 7 130 222 339 5
|
lmmbrf |
|- ( ph -> ( F ( ~~>t ` J ) y <-> ( y e. X /\ A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 341 |
340
|
adantr |
|- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> ( F ( ~~>t ` J ) y <-> ( y e. X /\ A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 342 |
221 338 341
|
mpbir2and |
|- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> F ( ~~>t ` J ) y ) |
| 343 |
201 342
|
sylan2br |
|- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> F ( ~~>t ` J ) y ) |
| 344 |
|
releldm |
|- ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) y ) -> F e. dom ( ~~>t ` J ) ) |
| 345 |
190 343 344
|
sylancr |
|- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> F e. dom ( ~~>t ` J ) ) |
| 346 |
189 345
|
exlimddv |
|- ( ph -> F e. dom ( ~~>t ` J ) ) |