Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
4 |
|
heiborlem2.5 |
|- A e. _V |
5 |
|
heiborlem2.6 |
|- C e. _V |
6 |
|
eleq1 |
|- ( y = A -> ( y e. ( F ` n ) <-> A e. ( F ` n ) ) ) |
7 |
|
oveq1 |
|- ( y = A -> ( y B n ) = ( A B n ) ) |
8 |
7
|
eleq1d |
|- ( y = A -> ( ( y B n ) e. K <-> ( A B n ) e. K ) ) |
9 |
6 8
|
3anbi23d |
|- ( y = A -> ( ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) <-> ( n e. NN0 /\ A e. ( F ` n ) /\ ( A B n ) e. K ) ) ) |
10 |
|
eleq1 |
|- ( n = C -> ( n e. NN0 <-> C e. NN0 ) ) |
11 |
|
fveq2 |
|- ( n = C -> ( F ` n ) = ( F ` C ) ) |
12 |
11
|
eleq2d |
|- ( n = C -> ( A e. ( F ` n ) <-> A e. ( F ` C ) ) ) |
13 |
|
oveq2 |
|- ( n = C -> ( A B n ) = ( A B C ) ) |
14 |
13
|
eleq1d |
|- ( n = C -> ( ( A B n ) e. K <-> ( A B C ) e. K ) ) |
15 |
10 12 14
|
3anbi123d |
|- ( n = C -> ( ( n e. NN0 /\ A e. ( F ` n ) /\ ( A B n ) e. K ) <-> ( C e. NN0 /\ A e. ( F ` C ) /\ ( A B C ) e. K ) ) ) |
16 |
4 5 9 15 3
|
brab |
|- ( A G C <-> ( C e. NN0 /\ A e. ( F ` C ) /\ ( A B C ) e. K ) ) |