| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
| 3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
| 4 |
|
heibor.5 |
|- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
| 5 |
|
heibor.6 |
|- ( ph -> D e. ( CMet ` X ) ) |
| 6 |
|
heibor.7 |
|- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
| 7 |
|
heibor.8 |
|- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
| 8 |
|
heibor.9 |
|- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 9 |
|
heibor.10 |
|- ( ph -> C G 0 ) |
| 10 |
|
heibor.11 |
|- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
| 11 |
|
fveq2 |
|- ( x = 0 -> ( S ` x ) = ( S ` 0 ) ) |
| 12 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 13 |
11 12
|
breq12d |
|- ( x = 0 -> ( ( S ` x ) G x <-> ( S ` 0 ) G 0 ) ) |
| 14 |
13
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` 0 ) G 0 ) ) ) |
| 15 |
|
fveq2 |
|- ( x = k -> ( S ` x ) = ( S ` k ) ) |
| 16 |
|
id |
|- ( x = k -> x = k ) |
| 17 |
15 16
|
breq12d |
|- ( x = k -> ( ( S ` x ) G x <-> ( S ` k ) G k ) ) |
| 18 |
17
|
imbi2d |
|- ( x = k -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` k ) G k ) ) ) |
| 19 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( S ` x ) = ( S ` ( k + 1 ) ) ) |
| 20 |
|
id |
|- ( x = ( k + 1 ) -> x = ( k + 1 ) ) |
| 21 |
19 20
|
breq12d |
|- ( x = ( k + 1 ) -> ( ( S ` x ) G x <-> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 22 |
21
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 23 |
|
fveq2 |
|- ( x = A -> ( S ` x ) = ( S ` A ) ) |
| 24 |
|
id |
|- ( x = A -> x = A ) |
| 25 |
23 24
|
breq12d |
|- ( x = A -> ( ( S ` x ) G x <-> ( S ` A ) G A ) ) |
| 26 |
25
|
imbi2d |
|- ( x = A -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` A ) G A ) ) ) |
| 27 |
10
|
fveq1i |
|- ( S ` 0 ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) |
| 28 |
|
0z |
|- 0 e. ZZ |
| 29 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) ) |
| 30 |
28 29
|
ax-mp |
|- ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) |
| 31 |
27 30
|
eqtri |
|- ( S ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) |
| 32 |
|
0nn0 |
|- 0 e. NN0 |
| 33 |
3
|
relopabiv |
|- Rel G |
| 34 |
33
|
brrelex1i |
|- ( C G 0 -> C e. _V ) |
| 35 |
9 34
|
syl |
|- ( ph -> C e. _V ) |
| 36 |
|
iftrue |
|- ( m = 0 -> if ( m = 0 , C , ( m - 1 ) ) = C ) |
| 37 |
|
eqid |
|- ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) |
| 38 |
36 37
|
fvmptg |
|- ( ( 0 e. NN0 /\ C e. _V ) -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) = C ) |
| 39 |
32 35 38
|
sylancr |
|- ( ph -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) = C ) |
| 40 |
31 39
|
eqtrid |
|- ( ph -> ( S ` 0 ) = C ) |
| 41 |
40 9
|
eqbrtrd |
|- ( ph -> ( S ` 0 ) G 0 ) |
| 42 |
|
df-br |
|- ( ( S ` k ) G k <-> <. ( S ` k ) , k >. e. G ) |
| 43 |
|
fveq2 |
|- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( T ` <. ( S ` k ) , k >. ) ) |
| 44 |
|
df-ov |
|- ( ( S ` k ) T k ) = ( T ` <. ( S ` k ) , k >. ) |
| 45 |
43 44
|
eqtr4di |
|- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( ( S ` k ) T k ) ) |
| 46 |
|
fvex |
|- ( S ` k ) e. _V |
| 47 |
|
vex |
|- k e. _V |
| 48 |
46 47
|
op2ndd |
|- ( x = <. ( S ` k ) , k >. -> ( 2nd ` x ) = k ) |
| 49 |
48
|
oveq1d |
|- ( x = <. ( S ` k ) , k >. -> ( ( 2nd ` x ) + 1 ) = ( k + 1 ) ) |
| 50 |
45 49
|
breq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
| 51 |
|
fveq2 |
|- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( B ` <. ( S ` k ) , k >. ) ) |
| 52 |
|
df-ov |
|- ( ( S ` k ) B k ) = ( B ` <. ( S ` k ) , k >. ) |
| 53 |
51 52
|
eqtr4di |
|- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( ( S ` k ) B k ) ) |
| 54 |
45 49
|
oveq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) = ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) |
| 55 |
53 54
|
ineq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) = ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) ) |
| 56 |
55
|
eleq1d |
|- ( x = <. ( S ` k ) , k >. -> ( ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
| 57 |
50 56
|
anbi12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 58 |
57
|
rspccv |
|- ( A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 59 |
8 58
|
syl |
|- ( ph -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 60 |
42 59
|
biimtrid |
|- ( ph -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 61 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 0 ) -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 62 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 63 |
61 62
|
eleq2s |
|- ( k e. NN0 -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 64 |
10
|
fveq1i |
|- ( S ` ( k + 1 ) ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) |
| 65 |
10
|
fveq1i |
|- ( S ` k ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) |
| 66 |
65
|
oveq1i |
|- ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) |
| 67 |
63 64 66
|
3eqtr4g |
|- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 68 |
|
eqeq1 |
|- ( m = ( k + 1 ) -> ( m = 0 <-> ( k + 1 ) = 0 ) ) |
| 69 |
|
oveq1 |
|- ( m = ( k + 1 ) -> ( m - 1 ) = ( ( k + 1 ) - 1 ) ) |
| 70 |
68 69
|
ifbieq2d |
|- ( m = ( k + 1 ) -> if ( m = 0 , C , ( m - 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 71 |
|
peano2nn0 |
|- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
| 72 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
| 73 |
|
nnne0 |
|- ( ( k + 1 ) e. NN -> ( k + 1 ) =/= 0 ) |
| 74 |
73
|
neneqd |
|- ( ( k + 1 ) e. NN -> -. ( k + 1 ) = 0 ) |
| 75 |
|
iffalse |
|- ( -. ( k + 1 ) = 0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
| 76 |
72 74 75
|
3syl |
|- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
| 77 |
|
ovex |
|- ( ( k + 1 ) - 1 ) e. _V |
| 78 |
76 77
|
eqeltrdi |
|- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) e. _V ) |
| 79 |
37 70 71 78
|
fvmptd3 |
|- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 80 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 81 |
|
ax-1cn |
|- 1 e. CC |
| 82 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 83 |
80 81 82
|
sylancl |
|- ( k e. NN0 -> ( ( k + 1 ) - 1 ) = k ) |
| 84 |
79 76 83
|
3eqtrd |
|- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = k ) |
| 85 |
84
|
oveq2d |
|- ( k e. NN0 -> ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( S ` k ) T k ) ) |
| 86 |
67 85
|
eqtrd |
|- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
| 87 |
86
|
breq1d |
|- ( k e. NN0 -> ( ( S ` ( k + 1 ) ) G ( k + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
| 88 |
87
|
biimprd |
|- ( k e. NN0 -> ( ( ( S ` k ) T k ) G ( k + 1 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 89 |
88
|
adantrd |
|- ( k e. NN0 -> ( ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 90 |
60 89
|
syl9r |
|- ( k e. NN0 -> ( ph -> ( ( S ` k ) G k -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 91 |
90
|
a2d |
|- ( k e. NN0 -> ( ( ph -> ( S ` k ) G k ) -> ( ph -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 92 |
14 18 22 26 41 91
|
nn0ind |
|- ( A e. NN0 -> ( ph -> ( S ` A ) G A ) ) |
| 93 |
92
|
impcom |
|- ( ( ph /\ A e. NN0 ) -> ( S ` A ) G A ) |