Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
4 |
|
heibor.5 |
|- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
5 |
|
heibor.6 |
|- ( ph -> D e. ( CMet ` X ) ) |
6 |
|
heibor.7 |
|- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
7 |
|
heibor.8 |
|- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
8 |
|
heibor.9 |
|- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
9 |
|
heibor.10 |
|- ( ph -> C G 0 ) |
10 |
|
heibor.11 |
|- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
11 |
|
heibor.12 |
|- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
12 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
13 |
|
inss1 |
|- ( ~P X i^i Fin ) C_ ~P X |
14 |
6
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ( ~P X i^i Fin ) ) |
15 |
13 14
|
sselid |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ~P X ) |
16 |
15
|
elpwid |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) C_ X ) |
17 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) G k ) |
18 |
|
fvex |
|- ( S ` k ) e. _V |
19 |
|
vex |
|- k e. _V |
20 |
1 2 3 18 19
|
heiborlem2 |
|- ( ( S ` k ) G k <-> ( k e. NN0 /\ ( S ` k ) e. ( F ` k ) /\ ( ( S ` k ) B k ) e. K ) ) |
21 |
20
|
simp2bi |
|- ( ( S ` k ) G k -> ( S ` k ) e. ( F ` k ) ) |
22 |
17 21
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. ( F ` k ) ) |
23 |
16 22
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. X ) |
24 |
12 23
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> ( S ` k ) e. X ) |
25 |
24
|
ralrimiva |
|- ( ph -> A. k e. NN ( S ` k ) e. X ) |
26 |
|
fveq2 |
|- ( k = n -> ( S ` k ) = ( S ` n ) ) |
27 |
26
|
eleq1d |
|- ( k = n -> ( ( S ` k ) e. X <-> ( S ` n ) e. X ) ) |
28 |
27
|
cbvralvw |
|- ( A. k e. NN ( S ` k ) e. X <-> A. n e. NN ( S ` n ) e. X ) |
29 |
25 28
|
sylib |
|- ( ph -> A. n e. NN ( S ` n ) e. X ) |
30 |
|
3re |
|- 3 e. RR |
31 |
|
3pos |
|- 0 < 3 |
32 |
30 31
|
elrpii |
|- 3 e. RR+ |
33 |
|
2nn |
|- 2 e. NN |
34 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
35 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
36 |
33 34 35
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
37 |
36
|
nnrpd |
|- ( n e. NN -> ( 2 ^ n ) e. RR+ ) |
38 |
|
rpdivcl |
|- ( ( 3 e. RR+ /\ ( 2 ^ n ) e. RR+ ) -> ( 3 / ( 2 ^ n ) ) e. RR+ ) |
39 |
32 37 38
|
sylancr |
|- ( n e. NN -> ( 3 / ( 2 ^ n ) ) e. RR+ ) |
40 |
|
opelxpi |
|- ( ( ( S ` n ) e. X /\ ( 3 / ( 2 ^ n ) ) e. RR+ ) -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
41 |
40
|
expcom |
|- ( ( 3 / ( 2 ^ n ) ) e. RR+ -> ( ( S ` n ) e. X -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) ) |
42 |
39 41
|
syl |
|- ( n e. NN -> ( ( S ` n ) e. X -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) ) |
43 |
42
|
ralimia |
|- ( A. n e. NN ( S ` n ) e. X -> A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
44 |
29 43
|
syl |
|- ( ph -> A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
45 |
11
|
fmpt |
|- ( A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) <-> M : NN --> ( X X. RR+ ) ) |
46 |
44 45
|
sylib |
|- ( ph -> M : NN --> ( X X. RR+ ) ) |