Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
4 |
|
heibor.5 |
|- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
5 |
|
heibor.6 |
|- ( ph -> D e. ( CMet ` X ) ) |
6 |
|
heibor.7 |
|- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
7 |
|
heibor.8 |
|- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
8 |
|
heibor.9 |
|- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
9 |
|
heibor.10 |
|- ( ph -> C G 0 ) |
10 |
|
heibor.11 |
|- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
11 |
|
heibor.12 |
|- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
12 |
|
3re |
|- 3 e. RR |
13 |
|
3pos |
|- 0 < 3 |
14 |
12 13
|
elrpii |
|- 3 e. RR+ |
15 |
|
rpdivcl |
|- ( ( r e. RR+ /\ 3 e. RR+ ) -> ( r / 3 ) e. RR+ ) |
16 |
14 15
|
mpan2 |
|- ( r e. RR+ -> ( r / 3 ) e. RR+ ) |
17 |
|
2re |
|- 2 e. RR |
18 |
|
1lt2 |
|- 1 < 2 |
19 |
|
expnlbnd |
|- ( ( ( r / 3 ) e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
20 |
17 18 19
|
mp3an23 |
|- ( ( r / 3 ) e. RR+ -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
21 |
16 20
|
syl |
|- ( r e. RR+ -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
22 |
|
2nn |
|- 2 e. NN |
23 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
24 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
25 |
22 23 24
|
sylancr |
|- ( k e. NN -> ( 2 ^ k ) e. NN ) |
26 |
25
|
nnrpd |
|- ( k e. NN -> ( 2 ^ k ) e. RR+ ) |
27 |
|
rpcn |
|- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) e. CC ) |
28 |
|
rpne0 |
|- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) =/= 0 ) |
29 |
|
3cn |
|- 3 e. CC |
30 |
|
divrec |
|- ( ( 3 e. CC /\ ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
31 |
29 30
|
mp3an1 |
|- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
32 |
27 28 31
|
syl2anc |
|- ( ( 2 ^ k ) e. RR+ -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
33 |
26 32
|
syl |
|- ( k e. NN -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
34 |
33
|
adantl |
|- ( ( r e. RR+ /\ k e. NN ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
35 |
34
|
breq1d |
|- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 / ( 2 ^ k ) ) < r <-> ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r ) ) |
36 |
25
|
nnrecred |
|- ( k e. NN -> ( 1 / ( 2 ^ k ) ) e. RR ) |
37 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
38 |
12 13
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
39 |
|
ltmuldiv2 |
|- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ r e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
40 |
38 39
|
mp3an3 |
|- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ r e. RR ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
41 |
36 37 40
|
syl2anr |
|- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
42 |
35 41
|
bitrd |
|- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 / ( 2 ^ k ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
43 |
42
|
rexbidva |
|- ( r e. RR+ -> ( E. k e. NN ( 3 / ( 2 ^ k ) ) < r <-> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
44 |
21 43
|
mpbird |
|- ( r e. RR+ -> E. k e. NN ( 3 / ( 2 ^ k ) ) < r ) |
45 |
|
fveq2 |
|- ( n = k -> ( S ` n ) = ( S ` k ) ) |
46 |
|
oveq2 |
|- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
47 |
46
|
oveq2d |
|- ( n = k -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ k ) ) ) |
48 |
45 47
|
opeq12d |
|- ( n = k -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
49 |
|
opex |
|- <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. e. _V |
50 |
48 11 49
|
fvmpt |
|- ( k e. NN -> ( M ` k ) = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
51 |
50
|
fveq2d |
|- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
52 |
|
fvex |
|- ( S ` k ) e. _V |
53 |
|
ovex |
|- ( 3 / ( 2 ^ k ) ) e. _V |
54 |
52 53
|
op2nd |
|- ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) = ( 3 / ( 2 ^ k ) ) |
55 |
51 54
|
eqtrdi |
|- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 3 / ( 2 ^ k ) ) ) |
56 |
55
|
breq1d |
|- ( k e. NN -> ( ( 2nd ` ( M ` k ) ) < r <-> ( 3 / ( 2 ^ k ) ) < r ) ) |
57 |
56
|
rexbiia |
|- ( E. k e. NN ( 2nd ` ( M ` k ) ) < r <-> E. k e. NN ( 3 / ( 2 ^ k ) ) < r ) |
58 |
44 57
|
sylibr |
|- ( r e. RR+ -> E. k e. NN ( 2nd ` ( M ` k ) ) < r ) |
59 |
58
|
rgen |
|- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |