| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
| 3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
| 4 |
|
heibor.5 |
|- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
| 5 |
|
heibor.6 |
|- ( ph -> D e. ( CMet ` X ) ) |
| 6 |
|
heibor.7 |
|- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
| 7 |
|
heibor.8 |
|- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
| 8 |
|
heibor.9 |
|- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 9 |
|
heibor.10 |
|- ( ph -> C G 0 ) |
| 10 |
|
heibor.11 |
|- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
| 11 |
|
heibor.12 |
|- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
| 12 |
|
heibor.13 |
|- ( ph -> U C_ J ) |
| 13 |
|
heiborlem9.14 |
|- ( ph -> U. U = X ) |
| 14 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
| 15 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 16 |
5 14 15
|
3syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 17 |
1
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem5 |
|- ( ph -> M : NN --> ( X X. RR+ ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem6 |
|- ( ph -> A. k e. NN ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem7 |
|- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |
| 22 |
21
|
a1i |
|- ( ph -> A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r ) |
| 23 |
16 19 20 22
|
caubl |
|- ( ph -> ( 1st o. M ) e. ( Cau ` D ) ) |
| 24 |
1
|
cmetcau |
|- ( ( D e. ( CMet ` X ) /\ ( 1st o. M ) e. ( Cau ` D ) ) -> ( 1st o. M ) e. dom ( ~~>t ` J ) ) |
| 25 |
5 23 24
|
syl2anc |
|- ( ph -> ( 1st o. M ) e. dom ( ~~>t ` J ) ) |
| 26 |
1
|
methaus |
|- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 27 |
16 26
|
syl |
|- ( ph -> J e. Haus ) |
| 28 |
|
lmfun |
|- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
| 29 |
|
funfvbrb |
|- ( Fun ( ~~>t ` J ) -> ( ( 1st o. M ) e. dom ( ~~>t ` J ) <-> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) ) |
| 30 |
27 28 29
|
3syl |
|- ( ph -> ( ( 1st o. M ) e. dom ( ~~>t ` J ) <-> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) ) |
| 31 |
25 30
|
mpbid |
|- ( ph -> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) |
| 32 |
|
lmcl |
|- ( ( J e. ( TopOn ` X ) /\ ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. X ) |
| 33 |
18 31 32
|
syl2anc |
|- ( ph -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. X ) |
| 34 |
33 13
|
eleqtrrd |
|- ( ph -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. U. U ) |
| 35 |
|
eluni2 |
|- ( ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. U. U <-> E. t e. U ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
| 36 |
34 35
|
sylib |
|- ( ph -> E. t e. U ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
| 37 |
5
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> D e. ( CMet ` X ) ) |
| 38 |
6
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> F : NN0 --> ( ~P X i^i Fin ) ) |
| 39 |
7
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
| 40 |
8
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 41 |
9
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> C G 0 ) |
| 42 |
12
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> U C_ J ) |
| 43 |
|
fvex |
|- ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. _V |
| 44 |
|
simprr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
| 45 |
|
simprl |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> t e. U ) |
| 46 |
31
|
adantr |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) |
| 47 |
1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46
|
heiborlem8 |
|- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ps ) |
| 48 |
36 47
|
rexlimddv |
|- ( ph -> ps ) |