Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
|- CC e. _V |
2 |
|
ax-hilex |
|- ~H e. _V |
3 |
1 2
|
elmap |
|- ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) |
4 |
|
oveq1 |
|- ( f = A -> ( f x. ( g ` x ) ) = ( A x. ( g ` x ) ) ) |
5 |
4
|
mpteq2dv |
|- ( f = A -> ( x e. ~H |-> ( f x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( g ` x ) ) ) ) |
6 |
|
fveq1 |
|- ( g = T -> ( g ` x ) = ( T ` x ) ) |
7 |
6
|
oveq2d |
|- ( g = T -> ( A x. ( g ` x ) ) = ( A x. ( T ` x ) ) ) |
8 |
7
|
mpteq2dv |
|- ( g = T -> ( x e. ~H |-> ( A x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
9 |
|
df-hfmul |
|- .fn = ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) ) |
10 |
2
|
mptex |
|- ( x e. ~H |-> ( A x. ( T ` x ) ) ) e. _V |
11 |
5 8 9 10
|
ovmpo |
|- ( ( A e. CC /\ T e. ( CC ^m ~H ) ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
12 |
3 11
|
sylan2br |
|- ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |