| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex |  |-  CC e. _V | 
						
							| 2 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 3 | 1 2 | elmap |  |-  ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) | 
						
							| 4 |  | oveq1 |  |-  ( f = A -> ( f x. ( g ` x ) ) = ( A x. ( g ` x ) ) ) | 
						
							| 5 | 4 | mpteq2dv |  |-  ( f = A -> ( x e. ~H |-> ( f x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( g ` x ) ) ) ) | 
						
							| 6 |  | fveq1 |  |-  ( g = T -> ( g ` x ) = ( T ` x ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( g = T -> ( A x. ( g ` x ) ) = ( A x. ( T ` x ) ) ) | 
						
							| 8 | 7 | mpteq2dv |  |-  ( g = T -> ( x e. ~H |-> ( A x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) | 
						
							| 9 |  | df-hfmul |  |-  .fn = ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) ) | 
						
							| 10 | 2 | mptex |  |-  ( x e. ~H |-> ( A x. ( T ` x ) ) ) e. _V | 
						
							| 11 | 5 8 9 10 | ovmpo |  |-  ( ( A e. CC /\ T e. ( CC ^m ~H ) ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) | 
						
							| 12 | 3 11 | sylan2br |  |-  ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |