| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hfmmval |  |-  ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) | 
						
							| 2 | 1 | fveq1d |  |-  ( ( A e. CC /\ T : ~H --> CC ) -> ( ( A .fn T ) ` B ) = ( ( x e. ~H |-> ( A x. ( T ` x ) ) ) ` B ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = B -> ( T ` x ) = ( T ` B ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( x = B -> ( A x. ( T ` x ) ) = ( A x. ( T ` B ) ) ) | 
						
							| 5 |  | eqid |  |-  ( x e. ~H |-> ( A x. ( T ` x ) ) ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) | 
						
							| 6 |  | ovex |  |-  ( A x. ( T ` B ) ) e. _V | 
						
							| 7 | 4 5 6 | fvmpt |  |-  ( B e. ~H -> ( ( x e. ~H |-> ( A x. ( T ` x ) ) ) ` B ) = ( A x. ( T ` B ) ) ) | 
						
							| 8 | 2 7 | sylan9eq |  |-  ( ( ( A e. CC /\ T : ~H --> CC ) /\ B e. ~H ) -> ( ( A .fn T ) ` B ) = ( A x. ( T ` B ) ) ) | 
						
							| 9 | 8 | 3impa |  |-  ( ( A e. CC /\ T : ~H --> CC /\ B e. ~H ) -> ( ( A .fn T ) ` B ) = ( A x. ( T ` B ) ) ) |