Step |
Hyp |
Ref |
Expression |
1 |
|
hfmmval |
|- ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
2 |
1
|
fveq1d |
|- ( ( A e. CC /\ T : ~H --> CC ) -> ( ( A .fn T ) ` B ) = ( ( x e. ~H |-> ( A x. ( T ` x ) ) ) ` B ) ) |
3 |
|
fveq2 |
|- ( x = B -> ( T ` x ) = ( T ` B ) ) |
4 |
3
|
oveq2d |
|- ( x = B -> ( A x. ( T ` x ) ) = ( A x. ( T ` B ) ) ) |
5 |
|
eqid |
|- ( x e. ~H |-> ( A x. ( T ` x ) ) ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) |
6 |
|
ovex |
|- ( A x. ( T ` B ) ) e. _V |
7 |
4 5 6
|
fvmpt |
|- ( B e. ~H -> ( ( x e. ~H |-> ( A x. ( T ` x ) ) ) ` B ) = ( A x. ( T ` B ) ) ) |
8 |
2 7
|
sylan9eq |
|- ( ( ( A e. CC /\ T : ~H --> CC ) /\ B e. ~H ) -> ( ( A .fn T ) ` B ) = ( A x. ( T ` B ) ) ) |
9 |
8
|
3impa |
|- ( ( A e. CC /\ T : ~H --> CC /\ B e. ~H ) -> ( ( A .fn T ) ` B ) = ( A x. ( T ` B ) ) ) |