Step |
Hyp |
Ref |
Expression |
1 |
|
hgt749d.o |
|- O = { z e. ZZ | -. 2 || z } |
2 |
|
hgt749d.n |
|- ( ph -> N e. O ) |
3 |
|
hgt749d.1 |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) |
4 |
|
breq2 |
|- ( n = N -> ( ( ; 1 0 ^ ; 2 7 ) <_ n <-> ( ; 1 0 ^ ; 2 7 ) <_ N ) ) |
5 |
|
oveq1 |
|- ( n = N -> ( n ^ 2 ) = ( N ^ 2 ) ) |
6 |
5
|
oveq2d |
|- ( n = N -> ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) ) |
7 |
|
oveq2 |
|- ( n = N -> ( ( Lam oF x. h ) vts n ) = ( ( Lam oF x. h ) vts N ) ) |
8 |
7
|
fveq1d |
|- ( n = N -> ( ( ( Lam oF x. h ) vts n ) ` x ) = ( ( ( Lam oF x. h ) vts N ) ` x ) ) |
9 |
|
oveq2 |
|- ( n = N -> ( ( Lam oF x. k ) vts n ) = ( ( Lam oF x. k ) vts N ) ) |
10 |
9
|
fveq1d |
|- ( n = N -> ( ( ( Lam oF x. k ) vts n ) ` x ) = ( ( ( Lam oF x. k ) vts N ) ` x ) ) |
11 |
10
|
oveq1d |
|- ( n = N -> ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) = ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) |
12 |
8 11
|
oveq12d |
|- ( n = N -> ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) = ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) ) |
13 |
|
negeq |
|- ( n = N -> -u n = -u N ) |
14 |
13
|
oveq1d |
|- ( n = N -> ( -u n x. x ) = ( -u N x. x ) ) |
15 |
14
|
oveq2d |
|- ( n = N -> ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) = ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) |
16 |
15
|
fveq2d |
|- ( n = N -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) = ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) |
17 |
12 16
|
oveq12d |
|- ( n = N -> ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) = ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
18 |
17
|
adantr |
|- ( ( n = N /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) = ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
19 |
18
|
itgeq2dv |
|- ( n = N -> S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
20 |
6 19
|
breq12d |
|- ( n = N -> ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x <-> ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) |
21 |
20
|
3anbi3d |
|- ( n = N -> ( ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) <-> ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) ) |
22 |
21
|
rexbidv |
|- ( n = N -> ( E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) <-> E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) ) |
23 |
22
|
rexbidv |
|- ( n = N -> ( E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) <-> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) ) |
24 |
4 23
|
imbi12d |
|- ( n = N -> ( ( ( ; 1 0 ^ ; 2 7 ) <_ n -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) ) <-> ( ( ; 1 0 ^ ; 2 7 ) <_ N -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) ) ) |
25 |
|
ax-hgt749 |
|- A. n e. { z e. ZZ | -. 2 || z } ( ( ; 1 0 ^ ; 2 7 ) <_ n -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) ) |
26 |
25
|
a1i |
|- ( ph -> A. n e. { z e. ZZ | -. 2 || z } ( ( ; 1 0 ^ ; 2 7 ) <_ n -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( n ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts n ) ` x ) x. ( ( ( ( Lam oF x. k ) vts n ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u n x. x ) ) ) ) _d x ) ) ) |
27 |
2 1
|
eleqtrdi |
|- ( ph -> N e. { z e. ZZ | -. 2 || z } ) |
28 |
24 26 27
|
rspcdva |
|- ( ph -> ( ( ; 1 0 ^ ; 2 7 ) <_ N -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) ) |
29 |
3 28
|
mpd |
|- ( ph -> E. h e. ( ( 0 [,) +oo ) ^m NN ) E. k e. ( ( 0 [,) +oo ) ^m NN ) ( A. m e. NN ( k ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) /\ A. m e. NN ( h ` m ) <_ ( 1 . _ 4 _ 1 4 ) /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( N ^ 2 ) ) <_ S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. h ) vts N ) ` x ) x. ( ( ( ( Lam oF x. k ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) ) |