| Step |
Hyp |
Ref |
Expression |
| 1 |
|
7nn0 |
|- 7 e. NN0 |
| 2 |
|
3re |
|- 3 e. RR |
| 3 |
|
4re |
|- 4 e. RR |
| 4 |
|
8re |
|- 8 e. RR |
| 5 |
3 4
|
pm3.2i |
|- ( 4 e. RR /\ 8 e. RR ) |
| 6 |
|
dp2cl |
|- ( ( 4 e. RR /\ 8 e. RR ) -> _ 4 8 e. RR ) |
| 7 |
5 6
|
ax-mp |
|- _ 4 8 e. RR |
| 8 |
2 7
|
pm3.2i |
|- ( 3 e. RR /\ _ 4 8 e. RR ) |
| 9 |
|
dp2cl |
|- ( ( 3 e. RR /\ _ 4 8 e. RR ) -> _ 3 _ 4 8 e. RR ) |
| 10 |
8 9
|
ax-mp |
|- _ 3 _ 4 8 e. RR |
| 11 |
|
dpcl |
|- ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 12 |
1 10 11
|
mp2an |
|- ( 7 . _ 3 _ 4 8 ) e. RR |
| 13 |
12
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 14 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 15 |
14
|
adantr |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> N e. RR ) |
| 16 |
|
0re |
|- 0 e. RR |
| 17 |
16
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 e. RR ) |
| 18 |
|
10re |
|- ; 1 0 e. RR |
| 19 |
|
2nn0 |
|- 2 e. NN0 |
| 20 |
19 1
|
deccl |
|- ; 2 7 e. NN0 |
| 21 |
|
reexpcl |
|- ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
| 22 |
18 20 21
|
mp2an |
|- ( ; 1 0 ^ ; 2 7 ) e. RR |
| 23 |
22
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
| 24 |
|
0lt1 |
|- 0 < 1 |
| 25 |
|
1nn |
|- 1 e. NN |
| 26 |
|
0nn0 |
|- 0 e. NN0 |
| 27 |
|
1nn0 |
|- 1 e. NN0 |
| 28 |
|
1re |
|- 1 e. RR |
| 29 |
|
9re |
|- 9 e. RR |
| 30 |
|
1lt9 |
|- 1 < 9 |
| 31 |
28 29 30
|
ltleii |
|- 1 <_ 9 |
| 32 |
25 26 27 31
|
declei |
|- 1 <_ ; 1 0 |
| 33 |
|
expge1 |
|- ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 /\ 1 <_ ; 1 0 ) -> 1 <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 34 |
18 20 32 33
|
mp3an |
|- 1 <_ ( ; 1 0 ^ ; 2 7 ) |
| 35 |
16 28 22
|
ltletri |
|- ( ( 0 < 1 /\ 1 <_ ( ; 1 0 ^ ; 2 7 ) ) -> 0 < ( ; 1 0 ^ ; 2 7 ) ) |
| 36 |
24 34 35
|
mp2an |
|- 0 < ( ; 1 0 ^ ; 2 7 ) |
| 37 |
36
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < ( ; 1 0 ^ ; 2 7 ) ) |
| 38 |
|
simpr |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) <_ N ) |
| 39 |
17 23 15 37 38
|
ltletrd |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < N ) |
| 40 |
15 39
|
elrpd |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> N e. RR+ ) |
| 41 |
40
|
relogcld |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( log ` N ) e. RR ) |
| 42 |
40
|
rpge0d |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 <_ N ) |
| 43 |
15 42
|
resqrtcld |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( sqrt ` N ) e. RR ) |
| 44 |
40
|
sqrtgt0d |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 < ( sqrt ` N ) ) |
| 45 |
17 44
|
gtned |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( sqrt ` N ) =/= 0 ) |
| 46 |
41 43 45
|
redivcld |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) |
| 47 |
13 46
|
remulcld |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) |
| 48 |
|
elrp |
|- ( ( ; 1 0 ^ ; 2 7 ) e. RR+ <-> ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 < ( ; 1 0 ^ ; 2 7 ) ) ) |
| 49 |
22 36 48
|
mpbir2an |
|- ( ; 1 0 ^ ; 2 7 ) e. RR+ |
| 50 |
|
relogcl |
|- ( ( ; 1 0 ^ ; 2 7 ) e. RR+ -> ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR ) |
| 51 |
49 50
|
ax-mp |
|- ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR |
| 52 |
22 36
|
sqrtpclii |
|- ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR |
| 53 |
22 36
|
sqrtgt0ii |
|- 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) |
| 54 |
16 53
|
gtneii |
|- ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) =/= 0 |
| 55 |
51 52 54
|
redivcli |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR |
| 56 |
55
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR ) |
| 57 |
13 56
|
remulcld |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR ) |
| 58 |
|
qssre |
|- QQ C_ RR |
| 59 |
|
4nn0 |
|- 4 e. NN0 |
| 60 |
|
nn0ssq |
|- NN0 C_ QQ |
| 61 |
|
8nn0 |
|- 8 e. NN0 |
| 62 |
60 61
|
sselii |
|- 8 e. QQ |
| 63 |
59 62
|
dp2clq |
|- _ 4 8 e. QQ |
| 64 |
19 63
|
dp2clq |
|- _ 2 _ 4 8 e. QQ |
| 65 |
19 64
|
dp2clq |
|- _ 2 _ 2 _ 4 8 e. QQ |
| 66 |
59 65
|
dp2clq |
|- _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 67 |
26 66
|
dp2clq |
|- _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 68 |
26 67
|
dp2clq |
|- _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 69 |
26 68
|
dp2clq |
|- _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. QQ |
| 70 |
58 69
|
sselii |
|- _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR |
| 71 |
|
dpcl |
|- ( ( 0 e. NN0 /\ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR ) -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) |
| 72 |
26 70 71
|
mp2an |
|- ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR |
| 73 |
72
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR ) |
| 74 |
|
3nn0 |
|- 3 e. NN0 |
| 75 |
|
8pos |
|- 0 < 8 |
| 76 |
|
elrp |
|- ( 8 e. RR+ <-> ( 8 e. RR /\ 0 < 8 ) ) |
| 77 |
4 75 76
|
mpbir2an |
|- 8 e. RR+ |
| 78 |
59 77
|
rpdp2cl |
|- _ 4 8 e. RR+ |
| 79 |
74 78
|
rpdp2cl |
|- _ 3 _ 4 8 e. RR+ |
| 80 |
1 79
|
rpdpcl |
|- ( 7 . _ 3 _ 4 8 ) e. RR+ |
| 81 |
|
elrp |
|- ( ( 7 . _ 3 _ 4 8 ) e. RR+ <-> ( ( 7 . _ 3 _ 4 8 ) e. RR /\ 0 < ( 7 . _ 3 _ 4 8 ) ) ) |
| 82 |
80 81
|
mpbi |
|- ( ( 7 . _ 3 _ 4 8 ) e. RR /\ 0 < ( 7 . _ 3 _ 4 8 ) ) |
| 83 |
82
|
simpri |
|- 0 < ( 7 . _ 3 _ 4 8 ) |
| 84 |
16 12 83
|
ltleii |
|- 0 <_ ( 7 . _ 3 _ 4 8 ) |
| 85 |
84
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> 0 <_ ( 7 . _ 3 _ 4 8 ) ) |
| 86 |
49
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ; 1 0 ^ ; 2 7 ) e. RR+ ) |
| 87 |
|
2cn |
|- 2 e. CC |
| 88 |
87
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 89 |
|
2nn |
|- 2 e. NN |
| 90 |
89 1 27 31
|
declei |
|- 1 <_ ; 2 7 |
| 91 |
|
2pos |
|- 0 < 2 |
| 92 |
20
|
nn0rei |
|- ; 2 7 e. RR |
| 93 |
|
2re |
|- 2 e. RR |
| 94 |
28 92 93
|
lemul1i |
|- ( 0 < 2 -> ( 1 <_ ; 2 7 <-> ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) ) ) |
| 95 |
91 94
|
ax-mp |
|- ( 1 <_ ; 2 7 <-> ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) ) |
| 96 |
90 95
|
mpbi |
|- ( 1 x. 2 ) <_ ( ; 2 7 x. 2 ) |
| 97 |
88 96
|
eqbrtrri |
|- 2 <_ ( ; 2 7 x. 2 ) |
| 98 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 99 |
|
loge |
|- ( log ` _e ) = 1 |
| 100 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 101 |
100
|
simpri |
|- _e < 3 |
| 102 |
|
epr |
|- _e e. RR+ |
| 103 |
|
3rp |
|- 3 e. RR+ |
| 104 |
|
logltb |
|- ( ( _e e. RR+ /\ 3 e. RR+ ) -> ( _e < 3 <-> ( log ` _e ) < ( log ` 3 ) ) ) |
| 105 |
102 103 104
|
mp2an |
|- ( _e < 3 <-> ( log ` _e ) < ( log ` 3 ) ) |
| 106 |
101 105
|
mpbi |
|- ( log ` _e ) < ( log ` 3 ) |
| 107 |
99 106
|
eqbrtrri |
|- 1 < ( log ` 3 ) |
| 108 |
|
relogcl |
|- ( 3 e. RR+ -> ( log ` 3 ) e. RR ) |
| 109 |
103 108
|
ax-mp |
|- ( log ` 3 ) e. RR |
| 110 |
28 28 109 109
|
lt2addi |
|- ( ( 1 < ( log ` 3 ) /\ 1 < ( log ` 3 ) ) -> ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) ) |
| 111 |
107 107 110
|
mp2an |
|- ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) |
| 112 |
|
3cn |
|- 3 e. CC |
| 113 |
|
3ne0 |
|- 3 =/= 0 |
| 114 |
|
logmul2 |
|- ( ( 3 e. CC /\ 3 =/= 0 /\ 3 e. RR+ ) -> ( log ` ( 3 x. 3 ) ) = ( ( log ` 3 ) + ( log ` 3 ) ) ) |
| 115 |
112 113 103 114
|
mp3an |
|- ( log ` ( 3 x. 3 ) ) = ( ( log ` 3 ) + ( log ` 3 ) ) |
| 116 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
| 117 |
116
|
fveq2i |
|- ( log ` ( 3 x. 3 ) ) = ( log ` 9 ) |
| 118 |
|
9lt10 |
|- 9 < ; 1 0 |
| 119 |
29 18 118
|
ltleii |
|- 9 <_ ; 1 0 |
| 120 |
|
9pos |
|- 0 < 9 |
| 121 |
|
elrp |
|- ( 9 e. RR+ <-> ( 9 e. RR /\ 0 < 9 ) ) |
| 122 |
29 120 121
|
mpbir2an |
|- 9 e. RR+ |
| 123 |
|
10pos |
|- 0 < ; 1 0 |
| 124 |
|
elrp |
|- ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) |
| 125 |
18 123 124
|
mpbir2an |
|- ; 1 0 e. RR+ |
| 126 |
|
logleb |
|- ( ( 9 e. RR+ /\ ; 1 0 e. RR+ ) -> ( 9 <_ ; 1 0 <-> ( log ` 9 ) <_ ( log ` ; 1 0 ) ) ) |
| 127 |
122 125 126
|
mp2an |
|- ( 9 <_ ; 1 0 <-> ( log ` 9 ) <_ ( log ` ; 1 0 ) ) |
| 128 |
119 127
|
mpbi |
|- ( log ` 9 ) <_ ( log ` ; 1 0 ) |
| 129 |
117 128
|
eqbrtri |
|- ( log ` ( 3 x. 3 ) ) <_ ( log ` ; 1 0 ) |
| 130 |
115 129
|
eqbrtrri |
|- ( ( log ` 3 ) + ( log ` 3 ) ) <_ ( log ` ; 1 0 ) |
| 131 |
28 28
|
readdcli |
|- ( 1 + 1 ) e. RR |
| 132 |
109 109
|
readdcli |
|- ( ( log ` 3 ) + ( log ` 3 ) ) e. RR |
| 133 |
|
relogcl |
|- ( ; 1 0 e. RR+ -> ( log ` ; 1 0 ) e. RR ) |
| 134 |
125 133
|
ax-mp |
|- ( log ` ; 1 0 ) e. RR |
| 135 |
131 132 134
|
ltletri |
|- ( ( ( 1 + 1 ) < ( ( log ` 3 ) + ( log ` 3 ) ) /\ ( ( log ` 3 ) + ( log ` 3 ) ) <_ ( log ` ; 1 0 ) ) -> ( 1 + 1 ) < ( log ` ; 1 0 ) ) |
| 136 |
111 130 135
|
mp2an |
|- ( 1 + 1 ) < ( log ` ; 1 0 ) |
| 137 |
98 136
|
eqbrtrri |
|- 2 < ( log ` ; 1 0 ) |
| 138 |
93 134
|
ltlei |
|- ( 2 < ( log ` ; 1 0 ) -> 2 <_ ( log ` ; 1 0 ) ) |
| 139 |
137 138
|
ax-mp |
|- 2 <_ ( log ` ; 1 0 ) |
| 140 |
16 29 120
|
ltleii |
|- 0 <_ 9 |
| 141 |
89 1 26 140
|
decltdi |
|- 0 < ; 2 7 |
| 142 |
93 134 92
|
lemul2i |
|- ( 0 < ; 2 7 -> ( 2 <_ ( log ` ; 1 0 ) <-> ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) ) |
| 143 |
141 142
|
ax-mp |
|- ( 2 <_ ( log ` ; 1 0 ) <-> ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) |
| 144 |
139 143
|
mpbi |
|- ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) |
| 145 |
92 93
|
remulcli |
|- ( ; 2 7 x. 2 ) e. RR |
| 146 |
20
|
nn0zi |
|- ; 2 7 e. ZZ |
| 147 |
|
relogexp |
|- ( ( ; 1 0 e. RR+ /\ ; 2 7 e. ZZ ) -> ( log ` ( ; 1 0 ^ ; 2 7 ) ) = ( ; 2 7 x. ( log ` ; 1 0 ) ) ) |
| 148 |
125 146 147
|
mp2an |
|- ( log ` ( ; 1 0 ^ ; 2 7 ) ) = ( ; 2 7 x. ( log ` ; 1 0 ) ) |
| 149 |
148 51
|
eqeltrri |
|- ( ; 2 7 x. ( log ` ; 1 0 ) ) e. RR |
| 150 |
93 145 149
|
letri |
|- ( ( 2 <_ ( ; 2 7 x. 2 ) /\ ( ; 2 7 x. 2 ) <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) -> 2 <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) ) |
| 151 |
97 144 150
|
mp2an |
|- 2 <_ ( ; 2 7 x. ( log ` ; 1 0 ) ) |
| 152 |
|
relogef |
|- ( 2 e. RR -> ( log ` ( exp ` 2 ) ) = 2 ) |
| 153 |
93 152
|
ax-mp |
|- ( log ` ( exp ` 2 ) ) = 2 |
| 154 |
151 153 148
|
3brtr4i |
|- ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) |
| 155 |
|
rpefcl |
|- ( 2 e. RR -> ( exp ` 2 ) e. RR+ ) |
| 156 |
93 155
|
ax-mp |
|- ( exp ` 2 ) e. RR+ |
| 157 |
|
logleb |
|- ( ( ( exp ` 2 ) e. RR+ /\ ( ; 1 0 ^ ; 2 7 ) e. RR+ ) -> ( ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) <-> ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) ) |
| 158 |
156 49 157
|
mp2an |
|- ( ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) <-> ( log ` ( exp ` 2 ) ) <_ ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) |
| 159 |
154 158
|
mpbir |
|- ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) |
| 160 |
159
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( exp ` 2 ) <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 161 |
86 40 160 38
|
logdivsqrle |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( log ` N ) / ( sqrt ` N ) ) <_ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) |
| 162 |
46 56 13 85 161
|
lemul2ad |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) |
| 163 |
|
3lt10 |
|- 3 < ; 1 0 |
| 164 |
|
4lt10 |
|- 4 < ; 1 0 |
| 165 |
|
8lt10 |
|- 8 < ; 1 0 |
| 166 |
59 77 164 165
|
dp2lt10 |
|- _ 4 8 < ; 1 0 |
| 167 |
74 78 163 166
|
dp2lt10 |
|- _ 3 _ 4 8 < ; 1 0 |
| 168 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
| 169 |
1 79 61 167 168
|
dplti |
|- ( 7 . _ 3 _ 4 8 ) < 8 |
| 170 |
58 62
|
sselii |
|- 8 e. RR |
| 171 |
12 170 18
|
lttri |
|- ( ( ( 7 . _ 3 _ 4 8 ) < 8 /\ 8 < ; 1 0 ) -> ( 7 . _ 3 _ 4 8 ) < ; 1 0 ) |
| 172 |
169 165 171
|
mp2an |
|- ( 7 . _ 3 _ 4 8 ) < ; 1 0 |
| 173 |
27 26
|
deccl |
|- ; 1 0 e. NN0 |
| 174 |
173
|
numexp0 |
|- ( ; 1 0 ^ 0 ) = 1 |
| 175 |
|
0z |
|- 0 e. ZZ |
| 176 |
18 175 146
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ 0 e. ZZ /\ ; 2 7 e. ZZ ) |
| 177 |
|
1lt10 |
|- 1 < ; 1 0 |
| 178 |
177 141
|
pm3.2i |
|- ( 1 < ; 1 0 /\ 0 < ; 2 7 ) |
| 179 |
|
ltexp2a |
|- ( ( ( ; 1 0 e. RR /\ 0 e. ZZ /\ ; 2 7 e. ZZ ) /\ ( 1 < ; 1 0 /\ 0 < ; 2 7 ) ) -> ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ ; 2 7 ) ) |
| 180 |
176 178 179
|
mp2an |
|- ( ; 1 0 ^ 0 ) < ( ; 1 0 ^ ; 2 7 ) |
| 181 |
174 180
|
eqbrtrri |
|- 1 < ( ; 1 0 ^ ; 2 7 ) |
| 182 |
|
loggt0b |
|- ( ( ; 1 0 ^ ; 2 7 ) e. RR+ -> ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) <-> 1 < ( ; 1 0 ^ ; 2 7 ) ) ) |
| 183 |
49 182
|
ax-mp |
|- ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) <-> 1 < ( ; 1 0 ^ ; 2 7 ) ) |
| 184 |
181 183
|
mpbir |
|- 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) |
| 185 |
51 52
|
divgt0i |
|- ( ( 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) -> 0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) |
| 186 |
184 53 185
|
mp2an |
|- 0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) |
| 187 |
12 18 55
|
ltmul1i |
|- ( 0 < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( 7 . _ 3 _ 4 8 ) < ; 1 0 <-> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) ) |
| 188 |
186 187
|
ax-mp |
|- ( ( 7 . _ 3 _ 4 8 ) < ; 1 0 <-> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) ) |
| 189 |
172 188
|
mpbi |
|- ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) |
| 190 |
18
|
recni |
|- ; 1 0 e. CC |
| 191 |
|
expmul |
|- ( ( ; 1 0 e. CC /\ 7 e. NN0 /\ 2 e. NN0 ) -> ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) ) |
| 192 |
190 1 19 191
|
mp3an |
|- ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ( ; 1 0 ^ 7 ) ^ 2 ) |
| 193 |
|
7t2e14 |
|- ( 7 x. 2 ) = ; 1 4 |
| 194 |
193
|
oveq2i |
|- ( ; 1 0 ^ ( 7 x. 2 ) ) = ( ; 1 0 ^ ; 1 4 ) |
| 195 |
192 194
|
eqtr3i |
|- ( ( ; 1 0 ^ 7 ) ^ 2 ) = ( ; 1 0 ^ ; 1 4 ) |
| 196 |
195
|
fveq2i |
|- ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) |
| 197 |
|
reexpcl |
|- ( ( ; 1 0 e. RR /\ 7 e. NN0 ) -> ( ; 1 0 ^ 7 ) e. RR ) |
| 198 |
18 1 197
|
mp2an |
|- ( ; 1 0 ^ 7 ) e. RR |
| 199 |
1
|
nn0zi |
|- 7 e. ZZ |
| 200 |
|
expgt0 |
|- ( ( ; 1 0 e. RR /\ 7 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ 7 ) ) |
| 201 |
18 199 123 200
|
mp3an |
|- 0 < ( ; 1 0 ^ 7 ) |
| 202 |
16 198 201
|
ltleii |
|- 0 <_ ( ; 1 0 ^ 7 ) |
| 203 |
|
sqrtsq |
|- ( ( ( ; 1 0 ^ 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ 7 ) ) -> ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) ) |
| 204 |
198 202 203
|
mp2an |
|- ( sqrt ` ( ( ; 1 0 ^ 7 ) ^ 2 ) ) = ( ; 1 0 ^ 7 ) |
| 205 |
196 204
|
eqtr3i |
|- ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) = ( ; 1 0 ^ 7 ) |
| 206 |
27 59
|
deccl |
|- ; 1 4 e. NN0 |
| 207 |
206
|
nn0zi |
|- ; 1 4 e. ZZ |
| 208 |
18 207 146
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) |
| 209 |
|
1lt2 |
|- 1 < 2 |
| 210 |
27 19 59 1 164 209
|
decltc |
|- ; 1 4 < ; 2 7 |
| 211 |
177 210
|
pm3.2i |
|- ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) |
| 212 |
|
ltexp2a |
|- ( ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ ; 2 7 e. ZZ ) /\ ( 1 < ; 1 0 /\ ; 1 4 < ; 2 7 ) ) -> ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) ) |
| 213 |
208 211 212
|
mp2an |
|- ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) |
| 214 |
|
reexpcl |
|- ( ( ; 1 0 e. RR /\ ; 1 4 e. NN0 ) -> ( ; 1 0 ^ ; 1 4 ) e. RR ) |
| 215 |
18 206 214
|
mp2an |
|- ( ; 1 0 ^ ; 1 4 ) e. RR |
| 216 |
|
expgt0 |
|- ( ( ; 1 0 e. RR /\ ; 1 4 e. ZZ /\ 0 < ; 1 0 ) -> 0 < ( ; 1 0 ^ ; 1 4 ) ) |
| 217 |
18 207 123 216
|
mp3an |
|- 0 < ( ; 1 0 ^ ; 1 4 ) |
| 218 |
16 215 217
|
ltleii |
|- 0 <_ ( ; 1 0 ^ ; 1 4 ) |
| 219 |
215 218
|
pm3.2i |
|- ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) |
| 220 |
16 22 36
|
ltleii |
|- 0 <_ ( ; 1 0 ^ ; 2 7 ) |
| 221 |
22 220
|
pm3.2i |
|- ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 222 |
|
sqrtlt |
|- ( ( ( ( ; 1 0 ^ ; 1 4 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 1 4 ) ) /\ ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ 0 <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) |
| 223 |
219 221 222
|
mp2an |
|- ( ( ; 1 0 ^ ; 1 4 ) < ( ; 1 0 ^ ; 2 7 ) <-> ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) |
| 224 |
213 223
|
mpbi |
|- ( sqrt ` ( ; 1 0 ^ ; 1 4 ) ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) |
| 225 |
205 224
|
eqbrtrri |
|- ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) |
| 226 |
198 201
|
pm3.2i |
|- ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) |
| 227 |
52 53
|
pm3.2i |
|- ( ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) |
| 228 |
51 184
|
pm3.2i |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) |
| 229 |
|
ltdiv2 |
|- ( ( ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) /\ ( ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) /\ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) e. RR /\ 0 < ( log ` ( ; 1 0 ^ ; 2 7 ) ) ) ) -> ( ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) ) ) |
| 230 |
226 227 228 229
|
mp3an |
|- ( ( ; 1 0 ^ 7 ) < ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) ) |
| 231 |
225 230
|
mpbi |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) |
| 232 |
|
6nn |
|- 6 e. NN |
| 233 |
232
|
nngt0i |
|- 0 < 6 |
| 234 |
27 26 232 233
|
declt |
|- ; 1 0 < ; 1 6 |
| 235 |
|
6nn0 |
|- 6 e. NN0 |
| 236 |
27 235
|
deccl |
|- ; 1 6 e. NN0 |
| 237 |
236
|
nn0rei |
|- ; 1 6 e. RR |
| 238 |
25 235 26 123
|
declti |
|- 0 < ; 1 6 |
| 239 |
|
elrp |
|- ( ; 1 6 e. RR+ <-> ( ; 1 6 e. RR /\ 0 < ; 1 6 ) ) |
| 240 |
237 238 239
|
mpbir2an |
|- ; 1 6 e. RR+ |
| 241 |
|
logltb |
|- ( ( ; 1 0 e. RR+ /\ ; 1 6 e. RR+ ) -> ( ; 1 0 < ; 1 6 <-> ( log ` ; 1 0 ) < ( log ` ; 1 6 ) ) ) |
| 242 |
125 240 241
|
mp2an |
|- ( ; 1 0 < ; 1 6 <-> ( log ` ; 1 0 ) < ( log ` ; 1 6 ) ) |
| 243 |
234 242
|
mpbi |
|- ( log ` ; 1 0 ) < ( log ` ; 1 6 ) |
| 244 |
|
2exp4 |
|- ( 2 ^ 4 ) = ; 1 6 |
| 245 |
244
|
fveq2i |
|- ( log ` ( 2 ^ 4 ) ) = ( log ` ; 1 6 ) |
| 246 |
|
2rp |
|- 2 e. RR+ |
| 247 |
59
|
nn0zi |
|- 4 e. ZZ |
| 248 |
|
relogexp |
|- ( ( 2 e. RR+ /\ 4 e. ZZ ) -> ( log ` ( 2 ^ 4 ) ) = ( 4 x. ( log ` 2 ) ) ) |
| 249 |
246 247 248
|
mp2an |
|- ( log ` ( 2 ^ 4 ) ) = ( 4 x. ( log ` 2 ) ) |
| 250 |
245 249
|
eqtr3i |
|- ( log ` ; 1 6 ) = ( 4 x. ( log ` 2 ) ) |
| 251 |
243 250
|
breqtri |
|- ( log ` ; 1 0 ) < ( 4 x. ( log ` 2 ) ) |
| 252 |
100
|
simpli |
|- 2 < _e |
| 253 |
|
logltb |
|- ( ( 2 e. RR+ /\ _e e. RR+ ) -> ( 2 < _e <-> ( log ` 2 ) < ( log ` _e ) ) ) |
| 254 |
246 102 253
|
mp2an |
|- ( 2 < _e <-> ( log ` 2 ) < ( log ` _e ) ) |
| 255 |
252 254
|
mpbi |
|- ( log ` 2 ) < ( log ` _e ) |
| 256 |
255 99
|
breqtri |
|- ( log ` 2 ) < 1 |
| 257 |
|
4pos |
|- 0 < 4 |
| 258 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
| 259 |
246 258
|
ax-mp |
|- ( log ` 2 ) e. RR |
| 260 |
259 28 3
|
ltmul2i |
|- ( 0 < 4 -> ( ( log ` 2 ) < 1 <-> ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) ) ) |
| 261 |
257 260
|
ax-mp |
|- ( ( log ` 2 ) < 1 <-> ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) ) |
| 262 |
256 261
|
mpbi |
|- ( 4 x. ( log ` 2 ) ) < ( 4 x. 1 ) |
| 263 |
|
4cn |
|- 4 e. CC |
| 264 |
263
|
mulridi |
|- ( 4 x. 1 ) = 4 |
| 265 |
262 264
|
breqtri |
|- ( 4 x. ( log ` 2 ) ) < 4 |
| 266 |
3 259
|
remulcli |
|- ( 4 x. ( log ` 2 ) ) e. RR |
| 267 |
134 266 3
|
lttri |
|- ( ( ( log ` ; 1 0 ) < ( 4 x. ( log ` 2 ) ) /\ ( 4 x. ( log ` 2 ) ) < 4 ) -> ( log ` ; 1 0 ) < 4 ) |
| 268 |
251 265 267
|
mp2an |
|- ( log ` ; 1 0 ) < 4 |
| 269 |
134 3 92
|
ltmul2i |
|- ( 0 < ; 2 7 -> ( ( log ` ; 1 0 ) < 4 <-> ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) ) ) |
| 270 |
141 269
|
ax-mp |
|- ( ( log ` ; 1 0 ) < 4 <-> ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) ) |
| 271 |
268 270
|
mpbi |
|- ( ; 2 7 x. ( log ` ; 1 0 ) ) < ( ; 2 7 x. 4 ) |
| 272 |
148 271
|
eqbrtri |
|- ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) |
| 273 |
92 3
|
remulcli |
|- ( ; 2 7 x. 4 ) e. RR |
| 274 |
51 273 198
|
ltdiv1i |
|- ( 0 < ( ; 1 0 ^ 7 ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) ) |
| 275 |
201 274
|
ax-mp |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) < ( ; 2 7 x. 4 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) |
| 276 |
272 275
|
mpbi |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) |
| 277 |
16 201
|
gtneii |
|- ( ; 1 0 ^ 7 ) =/= 0 |
| 278 |
51 198 277
|
redivcli |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) e. RR |
| 279 |
273 198 277
|
redivcli |
|- ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR |
| 280 |
55 278 279
|
lttri |
|- ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) /\ ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( ; 1 0 ^ 7 ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) |
| 281 |
231 276 280
|
mp2an |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) |
| 282 |
|
7lt10 |
|- 7 < ; 1 0 |
| 283 |
|
2lt10 |
|- 2 < ; 1 0 |
| 284 |
19 173 1 26 282 283
|
decltc |
|- ; 2 7 < ; ; 1 0 0 |
| 285 |
|
10nn |
|- ; 1 0 e. NN |
| 286 |
285
|
decnncl2 |
|- ; ; 1 0 0 e. NN |
| 287 |
286
|
nnrei |
|- ; ; 1 0 0 e. RR |
| 288 |
92 287 3
|
ltmul1i |
|- ( 0 < 4 -> ( ; 2 7 < ; ; 1 0 0 <-> ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) ) ) |
| 289 |
257 288
|
ax-mp |
|- ( ; 2 7 < ; ; 1 0 0 <-> ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) ) |
| 290 |
284 289
|
mpbi |
|- ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) |
| 291 |
287 3
|
remulcli |
|- ( ; ; 1 0 0 x. 4 ) e. RR |
| 292 |
273 291 198
|
ltdiv1i |
|- ( 0 < ( ; 1 0 ^ 7 ) -> ( ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) <-> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) ) |
| 293 |
201 292
|
ax-mp |
|- ( ( ; 2 7 x. 4 ) < ( ; ; 1 0 0 x. 4 ) <-> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) ) |
| 294 |
290 293
|
mpbi |
|- ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) |
| 295 |
|
8nn |
|- 8 e. NN |
| 296 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 297 |
295 296
|
ax-mp |
|- 8 e. RR+ |
| 298 |
59 297
|
rpdp2cl |
|- _ 4 8 e. RR+ |
| 299 |
19 298
|
rpdp2cl |
|- _ 2 _ 4 8 e. RR+ |
| 300 |
19 299
|
rpdp2cl |
|- _ 2 _ 2 _ 4 8 e. RR+ |
| 301 |
59 300
|
dpgti |
|- 4 < ( 4 . _ 2 _ 2 _ 4 8 ) |
| 302 |
72
|
recni |
|- ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. CC |
| 303 |
198
|
recni |
|- ( ; 1 0 ^ 7 ) e. CC |
| 304 |
302 303
|
mulcli |
|- ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) e. CC |
| 305 |
16 123
|
gtneii |
|- ; 1 0 =/= 0 |
| 306 |
190 305
|
pm3.2i |
|- ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) |
| 307 |
287
|
recni |
|- ; ; 1 0 0 e. CC |
| 308 |
286
|
nnne0i |
|- ; ; 1 0 0 =/= 0 |
| 309 |
307 308
|
pm3.2i |
|- ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) |
| 310 |
|
divdiv1 |
|- ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) e. CC /\ ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) -> ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) |
| 311 |
304 306 309 310
|
mp3an |
|- ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) |
| 312 |
302 303 190 305
|
div23i |
|- ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) = ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) |
| 313 |
312
|
oveq1i |
|- ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ; 1 0 ) / ; ; 1 0 0 ) = ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) |
| 314 |
190 307
|
mulcli |
|- ( ; 1 0 x. ; ; 1 0 0 ) e. CC |
| 315 |
190 307 305 308
|
mulne0i |
|- ( ; 1 0 x. ; ; 1 0 0 ) =/= 0 |
| 316 |
302 303 314 315
|
divassi |
|- ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) |
| 317 |
|
expp1 |
|- ( ( ; 1 0 e. CC /\ 2 e. NN0 ) -> ( ; 1 0 ^ ( 2 + 1 ) ) = ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) ) |
| 318 |
190 19 317
|
mp2an |
|- ( ; 1 0 ^ ( 2 + 1 ) ) = ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) |
| 319 |
|
sq10 |
|- ( ; 1 0 ^ 2 ) = ; ; 1 0 0 |
| 320 |
319
|
oveq1i |
|- ( ( ; 1 0 ^ 2 ) x. ; 1 0 ) = ( ; ; 1 0 0 x. ; 1 0 ) |
| 321 |
307 190
|
mulcomi |
|- ( ; ; 1 0 0 x. ; 1 0 ) = ( ; 1 0 x. ; ; 1 0 0 ) |
| 322 |
318 320 321
|
3eqtrri |
|- ( ; 1 0 x. ; ; 1 0 0 ) = ( ; 1 0 ^ ( 2 + 1 ) ) |
| 323 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 324 |
323
|
oveq2i |
|- ( ; 1 0 ^ ( 2 + 1 ) ) = ( ; 1 0 ^ 3 ) |
| 325 |
322 324
|
eqtri |
|- ( ; 1 0 x. ; ; 1 0 0 ) = ( ; 1 0 ^ 3 ) |
| 326 |
325
|
oveq2i |
|- ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) |
| 327 |
74
|
nn0zi |
|- 3 e. ZZ |
| 328 |
199 327
|
pm3.2i |
|- ( 7 e. ZZ /\ 3 e. ZZ ) |
| 329 |
|
expsub |
|- ( ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) /\ ( 7 e. ZZ /\ 3 e. ZZ ) ) -> ( ; 1 0 ^ ( 7 - 3 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) ) |
| 330 |
306 328 329
|
mp2an |
|- ( ; 1 0 ^ ( 7 - 3 ) ) = ( ( ; 1 0 ^ 7 ) / ( ; 1 0 ^ 3 ) ) |
| 331 |
|
7cn |
|- 7 e. CC |
| 332 |
|
4p3e7 |
|- ( 4 + 3 ) = 7 |
| 333 |
263 112 332
|
addcomli |
|- ( 3 + 4 ) = 7 |
| 334 |
331 112 263 333
|
subaddrii |
|- ( 7 - 3 ) = 4 |
| 335 |
334
|
oveq2i |
|- ( ; 1 0 ^ ( 7 - 3 ) ) = ( ; 1 0 ^ 4 ) |
| 336 |
326 330 335
|
3eqtr2i |
|- ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( ; 1 0 ^ 4 ) |
| 337 |
336
|
oveq2i |
|- ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ( ; 1 0 ^ 7 ) / ( ; 1 0 x. ; ; 1 0 0 ) ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) |
| 338 |
173
|
numexp1 |
|- ( ; 1 0 ^ 1 ) = ; 1 0 |
| 339 |
338
|
oveq2i |
|- ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ; 1 0 ) |
| 340 |
59 300
|
rpdp2cl |
|- _ 4 _ 2 _ 2 _ 4 8 e. RR+ |
| 341 |
25
|
nnzi |
|- 1 e. ZZ |
| 342 |
89
|
nnzi |
|- 2 e. ZZ |
| 343 |
26 340 98 341 342
|
dpexpp1 |
|- ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 2 ) ) |
| 344 |
26 340
|
rpdp2cl |
|- _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR+ |
| 345 |
26 344 323 342 327
|
dpexpp1 |
|- ( ( 0 . _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 2 ) ) = ( ( 0 . _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 3 ) ) |
| 346 |
26 344
|
rpdp2cl |
|- _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 e. RR+ |
| 347 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 348 |
26 346 347 327 247
|
dpexpp1 |
|- ( ( 0 . _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 3 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) |
| 349 |
343 345 348
|
3eqtri |
|- ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 1 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) |
| 350 |
59 300
|
0dp2dp |
|- ( ( 0 . _ 4 _ 2 _ 2 _ 4 8 ) x. ; 1 0 ) = ( 4 . _ 2 _ 2 _ 4 8 ) |
| 351 |
339 349 350
|
3eqtr3i |
|- ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 4 ) ) = ( 4 . _ 2 _ 2 _ 4 8 ) |
| 352 |
316 337 351
|
3eqtri |
|- ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) x. ( ; 1 0 ^ 7 ) ) / ( ; 1 0 x. ; ; 1 0 0 ) ) = ( 4 . _ 2 _ 2 _ 4 8 ) |
| 353 |
311 313 352
|
3eqtr3i |
|- ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) = ( 4 . _ 2 _ 2 _ 4 8 ) |
| 354 |
301 353
|
breqtrri |
|- 4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) |
| 355 |
72 18 305
|
redivcli |
|- ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) e. RR |
| 356 |
355 198
|
remulcli |
|- ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) e. RR |
| 357 |
286
|
nngt0i |
|- 0 < ; ; 1 0 0 |
| 358 |
287 357
|
pm3.2i |
|- ( ; ; 1 0 0 e. RR /\ 0 < ; ; 1 0 0 ) |
| 359 |
|
ltmuldiv2 |
|- ( ( 4 e. RR /\ ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) e. RR /\ ( ; ; 1 0 0 e. RR /\ 0 < ; ; 1 0 0 ) ) -> ( ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) <-> 4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) ) ) |
| 360 |
3 356 358 359
|
mp3an |
|- ( ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) <-> 4 < ( ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) / ; ; 1 0 0 ) ) |
| 361 |
354 360
|
mpbir |
|- ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) |
| 362 |
|
ltdivmul2 |
|- ( ( ( ; ; 1 0 0 x. 4 ) e. RR /\ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) e. RR /\ ( ( ; 1 0 ^ 7 ) e. RR /\ 0 < ( ; 1 0 ^ 7 ) ) ) -> ( ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) <-> ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) ) ) |
| 363 |
291 355 226 362
|
mp3an |
|- ( ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) <-> ( ; ; 1 0 0 x. 4 ) < ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) x. ( ; 1 0 ^ 7 ) ) ) |
| 364 |
361 363
|
mpbir |
|- ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) |
| 365 |
291 198 277
|
redivcli |
|- ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR |
| 366 |
279 365 355
|
lttri |
|- ( ( ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) /\ ( ( ; ; 1 0 0 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) -> ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) |
| 367 |
294 364 366
|
mp2an |
|- ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) |
| 368 |
226
|
simpli |
|- ( ; 1 0 ^ 7 ) e. RR |
| 369 |
273 368 277
|
redivcli |
|- ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) e. RR |
| 370 |
55 369 355
|
lttri |
|- ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) /\ ( ( ; 2 7 x. 4 ) / ( ; 1 0 ^ 7 ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) -> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) |
| 371 |
281 367 370
|
mp2an |
|- ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) |
| 372 |
125 124
|
mpbi |
|- ( ; 1 0 e. RR /\ 0 < ; 1 0 ) |
| 373 |
|
ltmuldiv2 |
|- ( ( ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) e. RR /\ ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) e. RR /\ ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) -> ( ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) ) |
| 374 |
55 72 372 373
|
mp3an |
|- ( ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) <-> ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) < ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) / ; 1 0 ) ) |
| 375 |
371 374
|
mpbir |
|- ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) |
| 376 |
12 55
|
remulcli |
|- ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR |
| 377 |
18 55
|
remulcli |
|- ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) e. RR |
| 378 |
376 377 72
|
lttri |
|- ( ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) /\ ( ; 1 0 x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
| 379 |
189 375 378
|
mp2an |
|- ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) |
| 380 |
379
|
a1i |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` ( ; 1 0 ^ ; 2 7 ) ) / ( sqrt ` ( ; 1 0 ^ ; 2 7 ) ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |
| 381 |
47 57 73 162 380
|
lelttrd |
|- ( ( N e. NN0 /\ ( ; 1 0 ^ ; 2 7 ) <_ N ) -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) < ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) ) |