| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgt750leme.o |
|- O = { z e. ZZ | -. 2 || z } |
| 2 |
|
hgt750leme.n |
|- ( ph -> N e. NN ) |
| 3 |
|
hgt750lemb.2 |
|- ( ph -> 2 <_ N ) |
| 4 |
|
hgt750lemb.a |
|- A = { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` 0 ) e. ( O i^i Prime ) } |
| 5 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 6 |
|
3nn0 |
|- 3 e. NN0 |
| 7 |
6
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 8 |
|
ssidd |
|- ( ph -> NN C_ NN ) |
| 9 |
5 7 8
|
reprfi2 |
|- ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) |
| 10 |
4
|
ssrab3 |
|- A C_ ( NN ( repr ` 3 ) N ) |
| 11 |
|
ssfi |
|- ( ( ( NN ( repr ` 3 ) N ) e. Fin /\ A C_ ( NN ( repr ` 3 ) N ) ) -> A e. Fin ) |
| 12 |
9 10 11
|
sylancl |
|- ( ph -> A e. Fin ) |
| 13 |
|
vmaf |
|- Lam : NN --> RR |
| 14 |
13
|
a1i |
|- ( ( ph /\ n e. A ) -> Lam : NN --> RR ) |
| 15 |
|
ssidd |
|- ( ( ph /\ n e. A ) -> NN C_ NN ) |
| 16 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ n e. A ) -> N e. ZZ ) |
| 18 |
6
|
a1i |
|- ( ( ph /\ n e. A ) -> 3 e. NN0 ) |
| 19 |
|
simpr |
|- ( ( ph /\ n e. A ) -> n e. A ) |
| 20 |
10 19
|
sselid |
|- ( ( ph /\ n e. A ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 21 |
15 17 18 20
|
reprf |
|- ( ( ph /\ n e. A ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 22 |
|
c0ex |
|- 0 e. _V |
| 23 |
22
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 24 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 25 |
23 24
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 26 |
25
|
a1i |
|- ( ( ph /\ n e. A ) -> 0 e. ( 0 ..^ 3 ) ) |
| 27 |
21 26
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( n ` 0 ) e. NN ) |
| 28 |
14 27
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
| 29 |
|
1ex |
|- 1 e. _V |
| 30 |
29
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 31 |
30 24
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 32 |
31
|
a1i |
|- ( ( ph /\ n e. A ) -> 1 e. ( 0 ..^ 3 ) ) |
| 33 |
21 32
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( n ` 1 ) e. NN ) |
| 34 |
14 33
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
| 35 |
|
2ex |
|- 2 e. _V |
| 36 |
35
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 37 |
36 24
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 38 |
37
|
a1i |
|- ( ( ph /\ n e. A ) -> 2 e. ( 0 ..^ 3 ) ) |
| 39 |
21 38
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( n ` 2 ) e. NN ) |
| 40 |
14 39
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
| 41 |
34 40
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
| 42 |
28 41
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 43 |
12 42
|
fsumrecl |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 44 |
2
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 45 |
44
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
| 46 |
28 34
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. RR ) |
| 47 |
12 46
|
fsumrecl |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. RR ) |
| 48 |
45 47
|
remulcld |
|- ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) e. RR ) |
| 49 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 50 |
|
diffi |
|- ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) |
| 51 |
49 50
|
ax-mp |
|- ( ( 1 ... N ) \ Prime ) e. Fin |
| 52 |
|
snfi |
|- { 2 } e. Fin |
| 53 |
|
unfi |
|- ( ( ( ( 1 ... N ) \ Prime ) e. Fin /\ { 2 } e. Fin ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
| 54 |
51 52 53
|
mp2an |
|- ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin |
| 55 |
54
|
a1i |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
| 56 |
13
|
a1i |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> Lam : NN --> RR ) |
| 57 |
|
difss |
|- ( ( 1 ... N ) \ Prime ) C_ ( 1 ... N ) |
| 58 |
57
|
a1i |
|- ( ph -> ( ( 1 ... N ) \ Prime ) C_ ( 1 ... N ) ) |
| 59 |
|
2nn |
|- 2 e. NN |
| 60 |
59
|
a1i |
|- ( ph -> 2 e. NN ) |
| 61 |
|
elfz1b |
|- ( 2 e. ( 1 ... N ) <-> ( 2 e. NN /\ N e. NN /\ 2 <_ N ) ) |
| 62 |
61
|
biimpri |
|- ( ( 2 e. NN /\ N e. NN /\ 2 <_ N ) -> 2 e. ( 1 ... N ) ) |
| 63 |
60 2 3 62
|
syl3anc |
|- ( ph -> 2 e. ( 1 ... N ) ) |
| 64 |
63
|
snssd |
|- ( ph -> { 2 } C_ ( 1 ... N ) ) |
| 65 |
58 64
|
unssd |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ ( 1 ... N ) ) |
| 66 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 67 |
66
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
| 68 |
65 67
|
sstrd |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) |
| 69 |
68
|
sselda |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> i e. NN ) |
| 70 |
56 69
|
ffvelcdmd |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. RR ) |
| 71 |
55 70
|
fsumrecl |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) e. RR ) |
| 72 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 73 |
13
|
a1i |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> Lam : NN --> RR ) |
| 74 |
67
|
sselda |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) |
| 75 |
73 74
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) |
| 76 |
72 75
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. RR ) |
| 77 |
71 76
|
remulcld |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) e. RR ) |
| 78 |
45 77
|
remulcld |
|- ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) e. RR ) |
| 79 |
2
|
adantr |
|- ( ( ph /\ n e. A ) -> N e. NN ) |
| 80 |
79
|
nnrpd |
|- ( ( ph /\ n e. A ) -> N e. RR+ ) |
| 81 |
|
relogcl |
|- ( N e. RR+ -> ( log ` N ) e. RR ) |
| 82 |
80 81
|
syl |
|- ( ( ph /\ n e. A ) -> ( log ` N ) e. RR ) |
| 83 |
34 82
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) e. RR ) |
| 84 |
28 83
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) e. RR ) |
| 85 |
|
vmage0 |
|- ( ( n ` 0 ) e. NN -> 0 <_ ( Lam ` ( n ` 0 ) ) ) |
| 86 |
27 85
|
syl |
|- ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 0 ) ) ) |
| 87 |
|
vmage0 |
|- ( ( n ` 1 ) e. NN -> 0 <_ ( Lam ` ( n ` 1 ) ) ) |
| 88 |
33 87
|
syl |
|- ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 1 ) ) ) |
| 89 |
39
|
nnrpd |
|- ( ( ph /\ n e. A ) -> ( n ` 2 ) e. RR+ ) |
| 90 |
89
|
relogcld |
|- ( ( ph /\ n e. A ) -> ( log ` ( n ` 2 ) ) e. RR ) |
| 91 |
|
vmalelog |
|- ( ( n ` 2 ) e. NN -> ( Lam ` ( n ` 2 ) ) <_ ( log ` ( n ` 2 ) ) ) |
| 92 |
39 91
|
syl |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) <_ ( log ` ( n ` 2 ) ) ) |
| 93 |
15 17 18 20 38
|
reprle |
|- ( ( ph /\ n e. A ) -> ( n ` 2 ) <_ N ) |
| 94 |
|
logleb |
|- ( ( ( n ` 2 ) e. RR+ /\ N e. RR+ ) -> ( ( n ` 2 ) <_ N <-> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) ) |
| 95 |
94
|
biimpa |
|- ( ( ( ( n ` 2 ) e. RR+ /\ N e. RR+ ) /\ ( n ` 2 ) <_ N ) -> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) |
| 96 |
89 80 93 95
|
syl21anc |
|- ( ( ph /\ n e. A ) -> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) |
| 97 |
40 90 82 92 96
|
letrd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) <_ ( log ` N ) ) |
| 98 |
40 82 34 88 97
|
lemul2ad |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) <_ ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) |
| 99 |
41 83 28 86 98
|
lemul2ad |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) |
| 100 |
12 42 84 99
|
fsumle |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) |
| 101 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 102 |
2
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 103 |
101 102
|
logcld |
|- ( ph -> ( log ` N ) e. CC ) |
| 104 |
46
|
recnd |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. CC ) |
| 105 |
12 103 104
|
fsummulc2 |
|- ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = sum_ n e. A ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) |
| 106 |
103
|
adantr |
|- ( ( ph /\ n e. A ) -> ( log ` N ) e. CC ) |
| 107 |
106 104
|
mulcomd |
|- ( ( ph /\ n e. A ) -> ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) x. ( log ` N ) ) ) |
| 108 |
28
|
recnd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. CC ) |
| 109 |
34
|
recnd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. CC ) |
| 110 |
108 109 106
|
mulassd |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) x. ( log ` N ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) |
| 111 |
107 110
|
eqtrd |
|- ( ( ph /\ n e. A ) -> ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) |
| 112 |
111
|
sumeq2dv |
|- ( ph -> sum_ n e. A ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) |
| 113 |
105 112
|
eqtr2d |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) = ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) |
| 114 |
100 113
|
breqtrd |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) |
| 115 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 116 |
2
|
nnge1d |
|- ( ph -> 1 <_ N ) |
| 117 |
115 116
|
logge0d |
|- ( ph -> 0 <_ ( log ` N ) ) |
| 118 |
|
xpfi |
|- ( ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) e. Fin ) |
| 119 |
55 72 118
|
syl2anc |
|- ( ph -> ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) e. Fin ) |
| 120 |
13
|
a1i |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> Lam : NN --> RR ) |
| 121 |
68
|
adantr |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) |
| 122 |
|
xp1st |
|- ( u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ( 1st ` u ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) |
| 123 |
122
|
adantl |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 1st ` u ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) |
| 124 |
121 123
|
sseldd |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 1st ` u ) e. NN ) |
| 125 |
120 124
|
ffvelcdmd |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( Lam ` ( 1st ` u ) ) e. RR ) |
| 126 |
|
xp2nd |
|- ( u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ( 2nd ` u ) e. ( 1 ... N ) ) |
| 127 |
126
|
adantl |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 2nd ` u ) e. ( 1 ... N ) ) |
| 128 |
66 127
|
sselid |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 2nd ` u ) e. NN ) |
| 129 |
120 128
|
ffvelcdmd |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( Lam ` ( 2nd ` u ) ) e. RR ) |
| 130 |
125 129
|
remulcld |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. RR ) |
| 131 |
|
vmage0 |
|- ( ( 1st ` u ) e. NN -> 0 <_ ( Lam ` ( 1st ` u ) ) ) |
| 132 |
124 131
|
syl |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( Lam ` ( 1st ` u ) ) ) |
| 133 |
|
vmage0 |
|- ( ( 2nd ` u ) e. NN -> 0 <_ ( Lam ` ( 2nd ` u ) ) ) |
| 134 |
128 133
|
syl |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( Lam ` ( 2nd ` u ) ) ) |
| 135 |
125 129 132 134
|
mulge0d |
|- ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) |
| 136 |
|
ssidd |
|- ( ( ph /\ c e. A ) -> NN C_ NN ) |
| 137 |
16
|
adantr |
|- ( ( ph /\ c e. A ) -> N e. ZZ ) |
| 138 |
6
|
a1i |
|- ( ( ph /\ c e. A ) -> 3 e. NN0 ) |
| 139 |
|
simpr |
|- ( ( ph /\ c e. A ) -> c e. A ) |
| 140 |
10 139
|
sselid |
|- ( ( ph /\ c e. A ) -> c e. ( NN ( repr ` 3 ) N ) ) |
| 141 |
136 137 138 140
|
reprf |
|- ( ( ph /\ c e. A ) -> c : ( 0 ..^ 3 ) --> NN ) |
| 142 |
25
|
a1i |
|- ( ( ph /\ c e. A ) -> 0 e. ( 0 ..^ 3 ) ) |
| 143 |
141 142
|
ffvelcdmd |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) e. NN ) |
| 144 |
2
|
adantr |
|- ( ( ph /\ c e. A ) -> N e. NN ) |
| 145 |
136 137 138 140 142
|
reprle |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) <_ N ) |
| 146 |
|
elfz1b |
|- ( ( c ` 0 ) e. ( 1 ... N ) <-> ( ( c ` 0 ) e. NN /\ N e. NN /\ ( c ` 0 ) <_ N ) ) |
| 147 |
146
|
biimpri |
|- ( ( ( c ` 0 ) e. NN /\ N e. NN /\ ( c ` 0 ) <_ N ) -> ( c ` 0 ) e. ( 1 ... N ) ) |
| 148 |
143 144 145 147
|
syl3anc |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( 1 ... N ) ) |
| 149 |
4
|
reqabi |
|- ( c e. A <-> ( c e. ( NN ( repr ` 3 ) N ) /\ -. ( c ` 0 ) e. ( O i^i Prime ) ) ) |
| 150 |
149
|
simprbi |
|- ( c e. A -> -. ( c ` 0 ) e. ( O i^i Prime ) ) |
| 151 |
1
|
oddprm2 |
|- ( Prime \ { 2 } ) = ( O i^i Prime ) |
| 152 |
151
|
eleq2i |
|- ( ( c ` 0 ) e. ( Prime \ { 2 } ) <-> ( c ` 0 ) e. ( O i^i Prime ) ) |
| 153 |
150 152
|
sylnibr |
|- ( c e. A -> -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) |
| 154 |
139 153
|
syl |
|- ( ( ph /\ c e. A ) -> -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) |
| 155 |
148 154
|
jca |
|- ( ( ph /\ c e. A ) -> ( ( c ` 0 ) e. ( 1 ... N ) /\ -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) ) |
| 156 |
|
eldif |
|- ( ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) <-> ( ( c ` 0 ) e. ( 1 ... N ) /\ -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) ) |
| 157 |
155 156
|
sylibr |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) |
| 158 |
|
uncom |
|- ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( { 2 } u. ( ( 1 ... N ) \ Prime ) ) |
| 159 |
|
undif3 |
|- ( { 2 } u. ( ( 1 ... N ) \ Prime ) ) = ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) |
| 160 |
158 159
|
eqtri |
|- ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) |
| 161 |
|
ssequn1 |
|- ( { 2 } C_ ( 1 ... N ) <-> ( { 2 } u. ( 1 ... N ) ) = ( 1 ... N ) ) |
| 162 |
64 161
|
sylib |
|- ( ph -> ( { 2 } u. ( 1 ... N ) ) = ( 1 ... N ) ) |
| 163 |
162
|
difeq1d |
|- ( ph -> ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) = ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) |
| 164 |
160 163
|
eqtrid |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) |
| 165 |
164
|
eleq2d |
|- ( ph -> ( ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) <-> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ c e. A ) -> ( ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) <-> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) ) |
| 167 |
157 166
|
mpbird |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) |
| 168 |
31
|
a1i |
|- ( ( ph /\ c e. A ) -> 1 e. ( 0 ..^ 3 ) ) |
| 169 |
141 168
|
ffvelcdmd |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) e. NN ) |
| 170 |
136 137 138 140 168
|
reprle |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) <_ N ) |
| 171 |
|
elfz1b |
|- ( ( c ` 1 ) e. ( 1 ... N ) <-> ( ( c ` 1 ) e. NN /\ N e. NN /\ ( c ` 1 ) <_ N ) ) |
| 172 |
171
|
biimpri |
|- ( ( ( c ` 1 ) e. NN /\ N e. NN /\ ( c ` 1 ) <_ N ) -> ( c ` 1 ) e. ( 1 ... N ) ) |
| 173 |
169 144 170 172
|
syl3anc |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) e. ( 1 ... N ) ) |
| 174 |
167 173
|
opelxpd |
|- ( ( ph /\ c e. A ) -> <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) |
| 175 |
174
|
ralrimiva |
|- ( ph -> A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) |
| 176 |
|
fveq1 |
|- ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) |
| 177 |
|
fveq1 |
|- ( d = c -> ( d ` 1 ) = ( c ` 1 ) ) |
| 178 |
176 177
|
opeq12d |
|- ( d = c -> <. ( d ` 0 ) , ( d ` 1 ) >. = <. ( c ` 0 ) , ( c ` 1 ) >. ) |
| 179 |
178
|
cbvmptv |
|- ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ( c e. A |-> <. ( c ` 0 ) , ( c ` 1 ) >. ) |
| 180 |
179
|
rnmptss |
|- ( A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) C_ ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) |
| 181 |
175 180
|
syl |
|- ( ph -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) C_ ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) |
| 182 |
119 130 135 181
|
fsumless |
|- ( ph -> sum_ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) <_ sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) |
| 183 |
|
fvex |
|- ( n ` 0 ) e. _V |
| 184 |
|
fvex |
|- ( n ` 1 ) e. _V |
| 185 |
183 184
|
op1std |
|- ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( 1st ` u ) = ( n ` 0 ) ) |
| 186 |
185
|
fveq2d |
|- ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( Lam ` ( 1st ` u ) ) = ( Lam ` ( n ` 0 ) ) ) |
| 187 |
183 184
|
op2ndd |
|- ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( 2nd ` u ) = ( n ` 1 ) ) |
| 188 |
187
|
fveq2d |
|- ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( Lam ` ( 2nd ` u ) ) = ( Lam ` ( n ` 1 ) ) ) |
| 189 |
186 188
|
oveq12d |
|- ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) |
| 190 |
|
opex |
|- <. ( c ` 0 ) , ( c ` 1 ) >. e. _V |
| 191 |
190
|
rgenw |
|- A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. _V |
| 192 |
179
|
fnmpt |
|- ( A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. _V -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A ) |
| 193 |
191 192
|
mp1i |
|- ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A ) |
| 194 |
|
eqidd |
|- ( ph -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) |
| 195 |
141
|
ad2antrr |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c : ( 0 ..^ 3 ) --> NN ) |
| 196 |
195
|
ffnd |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c Fn ( 0 ..^ 3 ) ) |
| 197 |
21
|
ad4ant13 |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 198 |
197
|
ffnd |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n Fn ( 0 ..^ 3 ) ) |
| 199 |
|
simpr |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) |
| 200 |
179
|
a1i |
|- ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ( c e. A |-> <. ( c ` 0 ) , ( c ` 1 ) >. ) ) |
| 201 |
190
|
a1i |
|- ( ( ph /\ c e. A ) -> <. ( c ` 0 ) , ( c ` 1 ) >. e. _V ) |
| 202 |
200 201
|
fvmpt2d |
|- ( ( ph /\ c e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) |
| 203 |
202
|
adantr |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) |
| 204 |
203
|
adantr |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) |
| 205 |
|
fveq1 |
|- ( c = n -> ( c ` 0 ) = ( n ` 0 ) ) |
| 206 |
|
fveq1 |
|- ( c = n -> ( c ` 1 ) = ( n ` 1 ) ) |
| 207 |
205 206
|
opeq12d |
|- ( c = n -> <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. ) |
| 208 |
|
opex |
|- <. ( n ` 0 ) , ( n ` 1 ) >. e. _V |
| 209 |
208
|
a1i |
|- ( ( ph /\ n e. A ) -> <. ( n ` 0 ) , ( n ` 1 ) >. e. _V ) |
| 210 |
179 207 19 209
|
fvmptd3 |
|- ( ( ph /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) |
| 211 |
210
|
adantlr |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) |
| 212 |
211
|
adantr |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) |
| 213 |
199 204 212
|
3eqtr3d |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. ) |
| 214 |
183 184
|
opth2 |
|- ( <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. <-> ( ( c ` 0 ) = ( n ` 0 ) /\ ( c ` 1 ) = ( n ` 1 ) ) ) |
| 215 |
213 214
|
sylib |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( c ` 0 ) = ( n ` 0 ) /\ ( c ` 1 ) = ( n ` 1 ) ) ) |
| 216 |
215
|
simpld |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( c ` 0 ) = ( n ` 0 ) ) |
| 217 |
216
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` 0 ) = ( n ` 0 ) ) |
| 218 |
|
simpr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> i = 0 ) |
| 219 |
218
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` i ) = ( c ` 0 ) ) |
| 220 |
218
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( n ` i ) = ( n ` 0 ) ) |
| 221 |
217 219 220
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` i ) = ( n ` i ) ) |
| 222 |
215
|
simprd |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( c ` 1 ) = ( n ` 1 ) ) |
| 223 |
222
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` 1 ) = ( n ` 1 ) ) |
| 224 |
|
simpr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> i = 1 ) |
| 225 |
224
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` i ) = ( c ` 1 ) ) |
| 226 |
224
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( n ` i ) = ( n ` 1 ) ) |
| 227 |
223 225 226
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` i ) = ( n ` i ) ) |
| 228 |
216
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 0 ) = ( n ` 0 ) ) |
| 229 |
222
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 1 ) = ( n ` 1 ) ) |
| 230 |
228 229
|
oveq12d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) + ( c ` 1 ) ) = ( ( n ` 0 ) + ( n ` 1 ) ) ) |
| 231 |
230
|
oveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) |
| 232 |
24
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
| 233 |
232
|
sumeq1d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( c ` j ) = sum_ j e. { 0 , 1 , 2 } ( c ` j ) ) |
| 234 |
|
ssidd |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> NN C_ NN ) |
| 235 |
137
|
ad4antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> N e. ZZ ) |
| 236 |
6
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 3 e. NN0 ) |
| 237 |
140
|
ad4antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> c e. ( NN ( repr ` 3 ) N ) ) |
| 238 |
234 235 236 237
|
reprsum |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( c ` j ) = N ) |
| 239 |
|
fveq2 |
|- ( j = 0 -> ( c ` j ) = ( c ` 0 ) ) |
| 240 |
|
fveq2 |
|- ( j = 1 -> ( c ` j ) = ( c ` 1 ) ) |
| 241 |
|
fveq2 |
|- ( j = 2 -> ( c ` j ) = ( c ` 2 ) ) |
| 242 |
143
|
nncnd |
|- ( ( ph /\ c e. A ) -> ( c ` 0 ) e. CC ) |
| 243 |
242
|
ad4antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 0 ) e. CC ) |
| 244 |
169
|
nncnd |
|- ( ( ph /\ c e. A ) -> ( c ` 1 ) e. CC ) |
| 245 |
244
|
ad4antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 1 ) e. CC ) |
| 246 |
37
|
a1i |
|- ( ( ph /\ c e. A ) -> 2 e. ( 0 ..^ 3 ) ) |
| 247 |
141 246
|
ffvelcdmd |
|- ( ( ph /\ c e. A ) -> ( c ` 2 ) e. NN ) |
| 248 |
247
|
nncnd |
|- ( ( ph /\ c e. A ) -> ( c ` 2 ) e. CC ) |
| 249 |
248
|
ad4antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) e. CC ) |
| 250 |
243 245 249
|
3jca |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) e. CC /\ ( c ` 1 ) e. CC /\ ( c ` 2 ) e. CC ) ) |
| 251 |
22 29 35
|
3pm3.2i |
|- ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) |
| 252 |
251
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) ) |
| 253 |
|
0ne1 |
|- 0 =/= 1 |
| 254 |
253
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 0 =/= 1 ) |
| 255 |
|
0ne2 |
|- 0 =/= 2 |
| 256 |
255
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 0 =/= 2 ) |
| 257 |
|
1ne2 |
|- 1 =/= 2 |
| 258 |
257
|
a1i |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 1 =/= 2 ) |
| 259 |
239 240 241 250 252 254 256 258
|
sumtp |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. { 0 , 1 , 2 } ( c ` j ) = ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) ) |
| 260 |
233 238 259
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) = N ) |
| 261 |
243 245
|
addcld |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) + ( c ` 1 ) ) e. CC ) |
| 262 |
101
|
ad5antr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> N e. CC ) |
| 263 |
261 249 262
|
addrsub |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) = N <-> ( c ` 2 ) = ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) ) ) |
| 264 |
260 263
|
mpbid |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) = ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) ) |
| 265 |
232
|
sumeq1d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( n ` j ) = sum_ j e. { 0 , 1 , 2 } ( n ` j ) ) |
| 266 |
20
|
ad4ant13 |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 267 |
266
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 268 |
234 235 236 267
|
reprsum |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( n ` j ) = N ) |
| 269 |
|
fveq2 |
|- ( j = 0 -> ( n ` j ) = ( n ` 0 ) ) |
| 270 |
|
fveq2 |
|- ( j = 1 -> ( n ` j ) = ( n ` 1 ) ) |
| 271 |
|
fveq2 |
|- ( j = 2 -> ( n ` j ) = ( n ` 2 ) ) |
| 272 |
27
|
nncnd |
|- ( ( ph /\ n e. A ) -> ( n ` 0 ) e. CC ) |
| 273 |
272
|
adantlr |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 0 ) e. CC ) |
| 274 |
273
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 0 ) e. CC ) |
| 275 |
33
|
nncnd |
|- ( ( ph /\ n e. A ) -> ( n ` 1 ) e. CC ) |
| 276 |
275
|
adantlr |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 1 ) e. CC ) |
| 277 |
276
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 1 ) e. CC ) |
| 278 |
39
|
nncnd |
|- ( ( ph /\ n e. A ) -> ( n ` 2 ) e. CC ) |
| 279 |
278
|
adantlr |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 2 ) e. CC ) |
| 280 |
279
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 2 ) e. CC ) |
| 281 |
274 277 280
|
3jca |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( n ` 0 ) e. CC /\ ( n ` 1 ) e. CC /\ ( n ` 2 ) e. CC ) ) |
| 282 |
269 270 271 281 252 254 256 258
|
sumtp |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. { 0 , 1 , 2 } ( n ` j ) = ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) ) |
| 283 |
265 268 282
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) = N ) |
| 284 |
274 277
|
addcld |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( n ` 0 ) + ( n ` 1 ) ) e. CC ) |
| 285 |
284 280 262
|
addrsub |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) = N <-> ( n ` 2 ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) ) |
| 286 |
283 285
|
mpbid |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 2 ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) |
| 287 |
231 264 286
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) = ( n ` 2 ) ) |
| 288 |
|
simpr |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> i = 2 ) |
| 289 |
288
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` i ) = ( c ` 2 ) ) |
| 290 |
288
|
fveq2d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` i ) = ( n ` 2 ) ) |
| 291 |
287 289 290
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` i ) = ( n ` i ) ) |
| 292 |
|
simpr |
|- ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> i e. ( 0 ..^ 3 ) ) |
| 293 |
292 24
|
eleqtrdi |
|- ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> i e. { 0 , 1 , 2 } ) |
| 294 |
|
vex |
|- i e. _V |
| 295 |
294
|
eltp |
|- ( i e. { 0 , 1 , 2 } <-> ( i = 0 \/ i = 1 \/ i = 2 ) ) |
| 296 |
293 295
|
sylib |
|- ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> ( i = 0 \/ i = 1 \/ i = 2 ) ) |
| 297 |
221 227 291 296
|
mpjao3dan |
|- ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> ( c ` i ) = ( n ` i ) ) |
| 298 |
196 198 297
|
eqfnfvd |
|- ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c = n ) |
| 299 |
298
|
ex |
|- ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) |
| 300 |
299
|
anasss |
|- ( ( ph /\ ( c e. A /\ n e. A ) ) -> ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) |
| 301 |
300
|
ralrimivva |
|- ( ph -> A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) |
| 302 |
|
dff1o6 |
|- ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) <-> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A /\ ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) /\ A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) ) |
| 303 |
302
|
biimpri |
|- ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A /\ ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) /\ A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) |
| 304 |
193 194 301 303
|
syl3anc |
|- ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) |
| 305 |
181
|
sselda |
|- ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) |
| 306 |
305 125
|
syldan |
|- ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( Lam ` ( 1st ` u ) ) e. RR ) |
| 307 |
305 129
|
syldan |
|- ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( Lam ` ( 2nd ` u ) ) e. RR ) |
| 308 |
306 307
|
remulcld |
|- ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. RR ) |
| 309 |
308
|
recnd |
|- ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. CC ) |
| 310 |
189 12 304 210 309
|
fsumf1o |
|- ( ph -> sum_ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) |
| 311 |
76
|
recnd |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. CC ) |
| 312 |
70
|
recnd |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. CC ) |
| 313 |
55 311 312
|
fsummulc1 |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) |
| 314 |
49
|
a1i |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( 1 ... N ) e. Fin ) |
| 315 |
75
|
adantrl |
|- ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( Lam ` j ) e. RR ) |
| 316 |
315
|
anassrs |
|- ( ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) |
| 317 |
316
|
recnd |
|- ( ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. CC ) |
| 318 |
314 312 317
|
fsummulc2 |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) ) |
| 319 |
318
|
sumeq2dv |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) ) |
| 320 |
|
vex |
|- j e. _V |
| 321 |
294 320
|
op1std |
|- ( u = <. i , j >. -> ( 1st ` u ) = i ) |
| 322 |
321
|
fveq2d |
|- ( u = <. i , j >. -> ( Lam ` ( 1st ` u ) ) = ( Lam ` i ) ) |
| 323 |
294 320
|
op2ndd |
|- ( u = <. i , j >. -> ( 2nd ` u ) = j ) |
| 324 |
323
|
fveq2d |
|- ( u = <. i , j >. -> ( Lam ` ( 2nd ` u ) ) = ( Lam ` j ) ) |
| 325 |
322 324
|
oveq12d |
|- ( u = <. i , j >. -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( ( Lam ` i ) x. ( Lam ` j ) ) ) |
| 326 |
70
|
adantrr |
|- ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( Lam ` i ) e. RR ) |
| 327 |
326 315
|
remulcld |
|- ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( ( Lam ` i ) x. ( Lam ` j ) ) e. RR ) |
| 328 |
327
|
recnd |
|- ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( ( Lam ` i ) x. ( Lam ` j ) ) e. CC ) |
| 329 |
325 55 72 328
|
fsumxp |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) = sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) |
| 330 |
313 319 329
|
3eqtrrd |
|- ( ph -> sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) |
| 331 |
182 310 330
|
3brtr3d |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) <_ ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) |
| 332 |
47 77 45 117 331
|
lemul2ad |
|- ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) |
| 333 |
43 48 78 114 332
|
letrd |
|- ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) |