Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750leme.o |
|- O = { z e. ZZ | -. 2 || z } |
2 |
|
hgt750leme.n |
|- ( ph -> N e. NN ) |
3 |
|
hgt750leme.0 |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) |
4 |
|
hgt750leme.h |
|- ( ph -> H : NN --> ( 0 [,) +oo ) ) |
5 |
|
hgt750leme.k |
|- ( ph -> K : NN --> ( 0 [,) +oo ) ) |
6 |
|
hgt750leme.1 |
|- ( ( ph /\ m e. NN ) -> ( K ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) |
7 |
|
hgt750leme.2 |
|- ( ( ph /\ m e. NN ) -> ( H ` m ) <_ ( 1 . _ 4 _ 1 4 ) ) |
8 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
9 |
|
3nn0 |
|- 3 e. NN0 |
10 |
9
|
a1i |
|- ( ph -> 3 e. NN0 ) |
11 |
|
ssidd |
|- ( ph -> NN C_ NN ) |
12 |
8 10 11
|
reprfi2 |
|- ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) |
13 |
|
diffi |
|- ( ( NN ( repr ` 3 ) N ) e. Fin -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
14 |
12 13
|
syl |
|- ( ph -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
15 |
|
vmaf |
|- Lam : NN --> RR |
16 |
15
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> Lam : NN --> RR ) |
17 |
|
ssidd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> NN C_ NN ) |
18 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
19 |
18
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> N e. ZZ ) |
20 |
9
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 3 e. NN0 ) |
21 |
|
simpr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) |
22 |
21
|
eldifad |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
23 |
17 19 20 22
|
reprf |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
24 |
|
c0ex |
|- 0 e. _V |
25 |
24
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
26 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
27 |
25 26
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
28 |
27
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 0 e. ( 0 ..^ 3 ) ) |
29 |
23 28
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 0 ) e. NN ) |
30 |
16 29
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
31 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
32 |
4
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> H : NN --> ( 0 [,) +oo ) ) |
33 |
32 29
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. ( 0 [,) +oo ) ) |
34 |
31 33
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. RR ) |
35 |
30 34
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) e. RR ) |
36 |
|
1ex |
|- 1 e. _V |
37 |
36
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
38 |
37 26
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
39 |
38
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 1 e. ( 0 ..^ 3 ) ) |
40 |
23 39
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 1 ) e. NN ) |
41 |
16 40
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
42 |
5
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> K : NN --> ( 0 [,) +oo ) ) |
43 |
42 40
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. ( 0 [,) +oo ) ) |
44 |
31 43
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. RR ) |
45 |
41 44
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) e. RR ) |
46 |
|
2ex |
|- 2 e. _V |
47 |
46
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
48 |
47 26
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
49 |
48
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 2 e. ( 0 ..^ 3 ) ) |
50 |
23 49
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 2 ) e. NN ) |
51 |
16 50
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
52 |
42 50
|
ffvelrnd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. ( 0 [,) +oo ) ) |
53 |
31 52
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. RR ) |
54 |
51 53
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) |
55 |
45 54
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) |
56 |
35 55
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
57 |
14 56
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
58 |
|
3re |
|- 3 e. RR |
59 |
58
|
a1i |
|- ( ph -> 3 e. RR ) |
60 |
|
1nn0 |
|- 1 e. NN0 |
61 |
|
0nn0 |
|- 0 e. NN0 |
62 |
|
7nn0 |
|- 7 e. NN0 |
63 |
|
9nn0 |
|- 9 e. NN0 |
64 |
|
5nn0 |
|- 5 e. NN0 |
65 |
|
5nn |
|- 5 e. NN |
66 |
|
nnrp |
|- ( 5 e. NN -> 5 e. RR+ ) |
67 |
65 66
|
ax-mp |
|- 5 e. RR+ |
68 |
64 67
|
rpdp2cl |
|- _ 5 5 e. RR+ |
69 |
63 68
|
rpdp2cl |
|- _ 9 _ 5 5 e. RR+ |
70 |
63 69
|
rpdp2cl |
|- _ 9 _ 9 _ 5 5 e. RR+ |
71 |
62 70
|
rpdp2cl |
|- _ 7 _ 9 _ 9 _ 5 5 e. RR+ |
72 |
61 71
|
rpdp2cl |
|- _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR+ |
73 |
60 72
|
rpdpcl |
|- ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ |
74 |
73
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ ) |
75 |
74
|
rpred |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
76 |
75
|
resqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) |
77 |
|
4nn0 |
|- 4 e. NN0 |
78 |
|
4nn |
|- 4 e. NN |
79 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
80 |
78 79
|
ax-mp |
|- 4 e. RR+ |
81 |
60 80
|
rpdp2cl |
|- _ 1 4 e. RR+ |
82 |
77 81
|
rpdp2cl |
|- _ 4 _ 1 4 e. RR+ |
83 |
60 82
|
rpdpcl |
|- ( 1 . _ 4 _ 1 4 ) e. RR+ |
84 |
83
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR+ ) |
85 |
84
|
rpred |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
86 |
76 85
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) |
87 |
|
fveq1 |
|- ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) |
88 |
87
|
eleq1d |
|- ( d = c -> ( ( d ` 0 ) e. ( O i^i Prime ) <-> ( c ` 0 ) e. ( O i^i Prime ) ) ) |
89 |
88
|
notbid |
|- ( d = c -> ( -. ( d ` 0 ) e. ( O i^i Prime ) <-> -. ( c ` 0 ) e. ( O i^i Prime ) ) ) |
90 |
89
|
cbvrabv |
|- { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } = { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` 0 ) e. ( O i^i Prime ) } |
91 |
90
|
ssrab3 |
|- { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) |
92 |
|
ssfi |
|- ( ( ( NN ( repr ` 3 ) N ) e. Fin /\ { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) |
93 |
12 91 92
|
sylancl |
|- ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) |
94 |
15
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> Lam : NN --> RR ) |
95 |
|
ssidd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> NN C_ NN ) |
96 |
18
|
adantr |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> N e. ZZ ) |
97 |
9
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 3 e. NN0 ) |
98 |
91
|
a1i |
|- ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) |
99 |
98
|
sselda |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n e. ( NN ( repr ` 3 ) N ) ) |
100 |
95 96 97 99
|
reprf |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n : ( 0 ..^ 3 ) --> NN ) |
101 |
27
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 0 e. ( 0 ..^ 3 ) ) |
102 |
100 101
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 0 ) e. NN ) |
103 |
94 102
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
104 |
38
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 1 e. ( 0 ..^ 3 ) ) |
105 |
100 104
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 1 ) e. NN ) |
106 |
94 105
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
107 |
48
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 2 e. ( 0 ..^ 3 ) ) |
108 |
100 107
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 2 ) e. NN ) |
109 |
94 108
|
ffvelrnd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
110 |
106 109
|
remulcld |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
111 |
103 110
|
remulcld |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
112 |
93 111
|
fsumrecl |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
113 |
86 112
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
114 |
59 113
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) |
115 |
|
4re |
|- 4 e. RR |
116 |
|
8re |
|- 8 e. RR |
117 |
115 116
|
pm3.2i |
|- ( 4 e. RR /\ 8 e. RR ) |
118 |
|
dp2cl |
|- ( ( 4 e. RR /\ 8 e. RR ) -> _ 4 8 e. RR ) |
119 |
117 118
|
ax-mp |
|- _ 4 8 e. RR |
120 |
58 119
|
pm3.2i |
|- ( 3 e. RR /\ _ 4 8 e. RR ) |
121 |
|
dp2cl |
|- ( ( 3 e. RR /\ _ 4 8 e. RR ) -> _ 3 _ 4 8 e. RR ) |
122 |
120 121
|
ax-mp |
|- _ 3 _ 4 8 e. RR |
123 |
|
dpcl |
|- ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
124 |
62 122 123
|
mp2an |
|- ( 7 . _ 3 _ 4 8 ) e. RR |
125 |
124
|
a1i |
|- ( ph -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
126 |
2
|
nnrpd |
|- ( ph -> N e. RR+ ) |
127 |
126
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
128 |
2
|
nnred |
|- ( ph -> N e. RR ) |
129 |
126
|
rpge0d |
|- ( ph -> 0 <_ N ) |
130 |
128 129
|
resqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR ) |
131 |
126
|
rpsqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR+ ) |
132 |
131
|
rpne0d |
|- ( ph -> ( sqrt ` N ) =/= 0 ) |
133 |
127 130 132
|
redivcld |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) |
134 |
125 133
|
remulcld |
|- ( ph -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) |
135 |
128
|
resqcld |
|- ( ph -> ( N ^ 2 ) e. RR ) |
136 |
134 135
|
remulcld |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) e. RR ) |
137 |
|
0re |
|- 0 e. RR |
138 |
|
7re |
|- 7 e. RR |
139 |
|
9re |
|- 9 e. RR |
140 |
|
5re |
|- 5 e. RR |
141 |
140 140
|
pm3.2i |
|- ( 5 e. RR /\ 5 e. RR ) |
142 |
|
dp2cl |
|- ( ( 5 e. RR /\ 5 e. RR ) -> _ 5 5 e. RR ) |
143 |
141 142
|
ax-mp |
|- _ 5 5 e. RR |
144 |
139 143
|
pm3.2i |
|- ( 9 e. RR /\ _ 5 5 e. RR ) |
145 |
|
dp2cl |
|- ( ( 9 e. RR /\ _ 5 5 e. RR ) -> _ 9 _ 5 5 e. RR ) |
146 |
144 145
|
ax-mp |
|- _ 9 _ 5 5 e. RR |
147 |
139 146
|
pm3.2i |
|- ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) |
148 |
|
dp2cl |
|- ( ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) -> _ 9 _ 9 _ 5 5 e. RR ) |
149 |
147 148
|
ax-mp |
|- _ 9 _ 9 _ 5 5 e. RR |
150 |
138 149
|
pm3.2i |
|- ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) |
151 |
|
dp2cl |
|- ( ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) -> _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
152 |
150 151
|
ax-mp |
|- _ 7 _ 9 _ 9 _ 5 5 e. RR |
153 |
137 152
|
pm3.2i |
|- ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
154 |
|
dp2cl |
|- ( ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
155 |
153 154
|
ax-mp |
|- _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR |
156 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
157 |
60 155 156
|
mp2an |
|- ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR |
158 |
157
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
159 |
158
|
resqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) |
160 |
|
1re |
|- 1 e. RR |
161 |
160 115
|
pm3.2i |
|- ( 1 e. RR /\ 4 e. RR ) |
162 |
|
dp2cl |
|- ( ( 1 e. RR /\ 4 e. RR ) -> _ 1 4 e. RR ) |
163 |
161 162
|
ax-mp |
|- _ 1 4 e. RR |
164 |
115 163
|
pm3.2i |
|- ( 4 e. RR /\ _ 1 4 e. RR ) |
165 |
|
dp2cl |
|- ( ( 4 e. RR /\ _ 1 4 e. RR ) -> _ 4 _ 1 4 e. RR ) |
166 |
164 165
|
ax-mp |
|- _ 4 _ 1 4 e. RR |
167 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 4 _ 1 4 e. RR ) -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
168 |
60 166 167
|
mp2an |
|- ( 1 . _ 4 _ 1 4 ) e. RR |
169 |
168
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
170 |
159 169
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) |
171 |
41 51
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
172 |
30 171
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
173 |
14 172
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
174 |
170 173
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
175 |
59 112
|
remulcld |
|- ( ph -> ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
176 |
170 175
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) |
177 |
14 158 169 4 5 29 40 50 6 7
|
hgt750lemf |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
178 |
|
2re |
|- 2 e. RR |
179 |
178
|
a1i |
|- ( ph -> 2 e. RR ) |
180 |
|
10nn0 |
|- ; 1 0 e. NN0 |
181 |
|
2nn0 |
|- 2 e. NN0 |
182 |
181 62
|
deccl |
|- ; 2 7 e. NN0 |
183 |
180 182
|
nn0expcli |
|- ( ; 1 0 ^ ; 2 7 ) e. NN0 |
184 |
183
|
nn0rei |
|- ( ; 1 0 ^ ; 2 7 ) e. RR |
185 |
184
|
a1i |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
186 |
180
|
numexp1 |
|- ( ; 1 0 ^ 1 ) = ; 1 0 |
187 |
180
|
nn0rei |
|- ; 1 0 e. RR |
188 |
186 187
|
eqeltri |
|- ( ; 1 0 ^ 1 ) e. RR |
189 |
188
|
a1i |
|- ( ph -> ( ; 1 0 ^ 1 ) e. RR ) |
190 |
|
1nn |
|- 1 e. NN |
191 |
|
2lt9 |
|- 2 < 9 |
192 |
178 139 191
|
ltleii |
|- 2 <_ 9 |
193 |
190 61 181 192
|
declei |
|- 2 <_ ; 1 0 |
194 |
193 186
|
breqtrri |
|- 2 <_ ( ; 1 0 ^ 1 ) |
195 |
194
|
a1i |
|- ( ph -> 2 <_ ( ; 1 0 ^ 1 ) ) |
196 |
|
1z |
|- 1 e. ZZ |
197 |
182
|
nn0zi |
|- ; 2 7 e. ZZ |
198 |
187 196 197
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) |
199 |
|
1lt10 |
|- 1 < ; 1 0 |
200 |
198 199
|
pm3.2i |
|- ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) |
201 |
|
2nn |
|- 2 e. NN |
202 |
|
1lt9 |
|- 1 < 9 |
203 |
160 139 202
|
ltleii |
|- 1 <_ 9 |
204 |
201 62 60 203
|
declei |
|- 1 <_ ; 2 7 |
205 |
|
leexp2 |
|- ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) -> ( 1 <_ ; 2 7 <-> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) ) |
206 |
205
|
biimpa |
|- ( ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) /\ 1 <_ ; 2 7 ) -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) |
207 |
200 204 206
|
mp2an |
|- ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) |
208 |
207
|
a1i |
|- ( ph -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) |
209 |
179 189 185 195 208
|
letrd |
|- ( ph -> 2 <_ ( ; 1 0 ^ ; 2 7 ) ) |
210 |
179 185 128 209 3
|
letrd |
|- ( ph -> 2 <_ N ) |
211 |
|
eqid |
|- ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) = ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) |
212 |
1 2 210 90 211
|
hgt750lema |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
213 |
|
2z |
|- 2 e. ZZ |
214 |
213
|
a1i |
|- ( ph -> 2 e. ZZ ) |
215 |
74 214
|
rpexpcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR+ ) |
216 |
215 84
|
rpmulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR+ ) |
217 |
173 175 216
|
lemul2d |
|- ( ph -> ( sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) ) |
218 |
212 217
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
219 |
57 174 176 177 218
|
letrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
220 |
158
|
recnd |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. CC ) |
221 |
220
|
sqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. CC ) |
222 |
169
|
recnd |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. CC ) |
223 |
221 222
|
mulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) |
224 |
|
3cn |
|- 3 e. CC |
225 |
224
|
a1i |
|- ( ph -> 3 e. CC ) |
226 |
112
|
recnd |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. CC ) |
227 |
223 225 226
|
mul12d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) = ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
228 |
219 227
|
breqtrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
229 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
230 |
|
diffi |
|- ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) |
231 |
229 230
|
ax-mp |
|- ( ( 1 ... N ) \ Prime ) e. Fin |
232 |
|
snfi |
|- { 2 } e. Fin |
233 |
|
unfi |
|- ( ( ( ( 1 ... N ) \ Prime ) e. Fin /\ { 2 } e. Fin ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
234 |
231 232 233
|
mp2an |
|- ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin |
235 |
234
|
a1i |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
236 |
15
|
a1i |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> Lam : NN --> RR ) |
237 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
238 |
237
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
239 |
238
|
ssdifssd |
|- ( ph -> ( ( 1 ... N ) \ Prime ) C_ NN ) |
240 |
201
|
a1i |
|- ( ph -> 2 e. NN ) |
241 |
240
|
snssd |
|- ( ph -> { 2 } C_ NN ) |
242 |
239 241
|
unssd |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) |
243 |
242
|
sselda |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> i e. NN ) |
244 |
236 243
|
ffvelrnd |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. RR ) |
245 |
235 244
|
fsumrecl |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) e. RR ) |
246 |
|
chpvalz |
|- ( N e. ZZ -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
247 |
18 246
|
syl |
|- ( ph -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
248 |
|
chpf |
|- psi : RR --> RR |
249 |
248
|
a1i |
|- ( ph -> psi : RR --> RR ) |
250 |
249 128
|
ffvelrnd |
|- ( ph -> ( psi ` N ) e. RR ) |
251 |
247 250
|
eqeltrrd |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. RR ) |
252 |
245 251
|
remulcld |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) e. RR ) |
253 |
127 252
|
remulcld |
|- ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) e. RR ) |
254 |
86 253
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) e. RR ) |
255 |
59 254
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) e. RR ) |
256 |
1 2 210 90
|
hgt750lemb |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) |
257 |
112 253 216
|
lemul2d |
|- ( ph -> ( sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) |
258 |
256 257
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) |
259 |
|
3rp |
|- 3 e. RR+ |
260 |
259
|
a1i |
|- ( ph -> 3 e. RR+ ) |
261 |
113 254 260
|
lemul2d |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) ) |
262 |
258 261
|
mpbid |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) |
263 |
|
6re |
|- 6 e. RR |
264 |
263 58
|
pm3.2i |
|- ( 6 e. RR /\ 3 e. RR ) |
265 |
|
dp2cl |
|- ( ( 6 e. RR /\ 3 e. RR ) -> _ 6 3 e. RR ) |
266 |
264 265
|
ax-mp |
|- _ 6 3 e. RR |
267 |
178 266
|
pm3.2i |
|- ( 2 e. RR /\ _ 6 3 e. RR ) |
268 |
|
dp2cl |
|- ( ( 2 e. RR /\ _ 6 3 e. RR ) -> _ 2 _ 6 3 e. RR ) |
269 |
267 268
|
ax-mp |
|- _ 2 _ 6 3 e. RR |
270 |
115 269
|
pm3.2i |
|- ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) |
271 |
|
dp2cl |
|- ( ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) -> _ 4 _ 2 _ 6 3 e. RR ) |
272 |
270 271
|
ax-mp |
|- _ 4 _ 2 _ 6 3 e. RR |
273 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 4 _ 2 _ 6 3 e. RR ) -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) |
274 |
60 272 273
|
mp2an |
|- ( 1 . _ 4 _ 2 _ 6 3 ) e. RR |
275 |
274
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) |
276 |
275 130
|
remulcld |
|- ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) e. RR ) |
277 |
116 58
|
pm3.2i |
|- ( 8 e. RR /\ 3 e. RR ) |
278 |
|
dp2cl |
|- ( ( 8 e. RR /\ 3 e. RR ) -> _ 8 3 e. RR ) |
279 |
277 278
|
ax-mp |
|- _ 8 3 e. RR |
280 |
116 279
|
pm3.2i |
|- ( 8 e. RR /\ _ 8 3 e. RR ) |
281 |
|
dp2cl |
|- ( ( 8 e. RR /\ _ 8 3 e. RR ) -> _ 8 _ 8 3 e. RR ) |
282 |
280 281
|
ax-mp |
|- _ 8 _ 8 3 e. RR |
283 |
58 282
|
pm3.2i |
|- ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) |
284 |
|
dp2cl |
|- ( ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) -> _ 3 _ 8 _ 8 3 e. RR ) |
285 |
283 284
|
ax-mp |
|- _ 3 _ 8 _ 8 3 e. RR |
286 |
137 285
|
pm3.2i |
|- ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) |
287 |
|
dp2cl |
|- ( ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) -> _ 0 _ 3 _ 8 _ 8 3 e. RR ) |
288 |
286 287
|
ax-mp |
|- _ 0 _ 3 _ 8 _ 8 3 e. RR |
289 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 0 _ 3 _ 8 _ 8 3 e. RR ) -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) |
290 |
60 288 289
|
mp2an |
|- ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR |
291 |
290
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) |
292 |
291 128
|
remulcld |
|- ( ph -> ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) e. RR ) |
293 |
276 292
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) e. RR ) |
294 |
127 293
|
remulcld |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) e. RR ) |
295 |
86 294
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) e. RR ) |
296 |
59 295
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) e. RR ) |
297 |
|
vmage0 |
|- ( i e. NN -> 0 <_ ( Lam ` i ) ) |
298 |
243 297
|
syl |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> 0 <_ ( Lam ` i ) ) |
299 |
235 244 298
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) ) |
300 |
2 3
|
hgt750lemd |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) < ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) ) |
301 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
302 |
15
|
a1i |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> Lam : NN --> RR ) |
303 |
238
|
sselda |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) |
304 |
302 303
|
ffvelrnd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) |
305 |
|
vmage0 |
|- ( j e. NN -> 0 <_ ( Lam ` j ) ) |
306 |
303 305
|
syl |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> 0 <_ ( Lam ` j ) ) |
307 |
301 304 306
|
fsumge0 |
|- ( ph -> 0 <_ sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
308 |
2
|
hgt750lemc |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) |
309 |
245 276 251 292 299 300 307 308
|
ltmul12ad |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) < ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) |
310 |
252 293 309
|
ltled |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) |
311 |
160
|
a1i |
|- ( ph -> 1 e. RR ) |
312 |
|
1lt2 |
|- 1 < 2 |
313 |
312
|
a1i |
|- ( ph -> 1 < 2 ) |
314 |
311 179 128 313 210
|
ltletrd |
|- ( ph -> 1 < N ) |
315 |
128 314
|
rplogcld |
|- ( ph -> ( log ` N ) e. RR+ ) |
316 |
252 293 315
|
lemul2d |
|- ( ph -> ( ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) <-> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) |
317 |
310 316
|
mpbid |
|- ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) |
318 |
253 294 216
|
lemul2d |
|- ( ph -> ( ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) |
319 |
317 318
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) |
320 |
254 295 260
|
lemul2d |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) ) |
321 |
319 320
|
mpbid |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) |
322 |
157
|
resqcli |
|- ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR |
323 |
322 168
|
remulcli |
|- ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR |
324 |
274 290
|
remulcli |
|- ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. RR |
325 |
323 324
|
remulcli |
|- ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. RR |
326 |
58 325
|
remulcli |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR |
327 |
|
hgt750lem2 |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) < ( 7 . _ 3 _ 4 8 ) |
328 |
326 124 327
|
ltleii |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) |
329 |
326
|
a1i |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR ) |
330 |
315 131
|
rpdivcld |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR+ ) |
331 |
126 214
|
rpexpcld |
|- ( ph -> ( N ^ 2 ) e. RR+ ) |
332 |
330 331
|
rpmulcld |
|- ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) e. RR+ ) |
333 |
329 125 332
|
lemul1d |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) <-> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) ) |
334 |
328 333
|
mpbii |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
335 |
275
|
recnd |
|- ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. CC ) |
336 |
130
|
recnd |
|- ( ph -> ( sqrt ` N ) e. CC ) |
337 |
291
|
recnd |
|- ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. CC ) |
338 |
128
|
recnd |
|- ( ph -> N e. CC ) |
339 |
335 336 337 338
|
mul4d |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) |
340 |
339
|
oveq2d |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) ) |
341 |
127
|
recnd |
|- ( ph -> ( log ` N ) e. CC ) |
342 |
335 337
|
mulcld |
|- ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. CC ) |
343 |
336 338
|
mulcld |
|- ( ph -> ( ( sqrt ` N ) x. N ) e. CC ) |
344 |
342 343
|
mulcld |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) e. CC ) |
345 |
341 344
|
mulcomd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) |
346 |
340 345
|
eqtrd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) |
347 |
342 343 341
|
mulassd |
|- ( ph -> ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
348 |
346 347
|
eqtrd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
349 |
348
|
oveq2d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
350 |
86
|
recnd |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) |
351 |
343 341
|
mulcld |
|- ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) e. CC ) |
352 |
350 342 351
|
mulassd |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
353 |
349 352
|
eqtr4d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
354 |
353
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
355 |
59
|
recnd |
|- ( ph -> 3 e. CC ) |
356 |
350 342
|
mulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. CC ) |
357 |
355 356 351
|
mulassd |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
358 |
354 357
|
eqtr4d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
359 |
135
|
recnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
360 |
341 336 359 132
|
div32d |
|- ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) = ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) ) |
361 |
359 336 132
|
divcld |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) e. CC ) |
362 |
341 361
|
mulcomd |
|- ( ph -> ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) = ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) ) |
363 |
338
|
sqvald |
|- ( ph -> ( N ^ 2 ) = ( N x. N ) ) |
364 |
363
|
oveq1d |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( N x. N ) / ( sqrt ` N ) ) ) |
365 |
338 338 336 132
|
divassd |
|- ( ph -> ( ( N x. N ) / ( sqrt ` N ) ) = ( N x. ( N / ( sqrt ` N ) ) ) ) |
366 |
|
divsqrtid |
|- ( N e. RR+ -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) |
367 |
126 366
|
syl |
|- ( ph -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) |
368 |
367
|
oveq2d |
|- ( ph -> ( N x. ( N / ( sqrt ` N ) ) ) = ( N x. ( sqrt ` N ) ) ) |
369 |
364 365 368
|
3eqtrd |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( N x. ( sqrt ` N ) ) ) |
370 |
338 336
|
mulcomd |
|- ( ph -> ( N x. ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) |
371 |
369 370
|
eqtrd |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) |
372 |
371
|
oveq1d |
|- ( ph -> ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) = ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) |
373 |
360 362 372
|
3eqtrrd |
|- ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) = ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) |
374 |
373
|
oveq2d |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
375 |
358 374
|
eqtrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
376 |
125
|
recnd |
|- ( ph -> ( 7 . _ 3 _ 4 8 ) e. CC ) |
377 |
133
|
recnd |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. CC ) |
378 |
376 377 359
|
mulassd |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) = ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
379 |
334 375 378
|
3brtr4d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
380 |
255 296 136 321 379
|
letrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
381 |
114 255 136 262 380
|
letrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
382 |
57 114 136 228 381
|
letrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |