| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgt750leme.o |
|- O = { z e. ZZ | -. 2 || z } |
| 2 |
|
hgt750leme.n |
|- ( ph -> N e. NN ) |
| 3 |
|
hgt750leme.0 |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) <_ N ) |
| 4 |
|
hgt750leme.h |
|- ( ph -> H : NN --> ( 0 [,) +oo ) ) |
| 5 |
|
hgt750leme.k |
|- ( ph -> K : NN --> ( 0 [,) +oo ) ) |
| 6 |
|
hgt750leme.1 |
|- ( ( ph /\ m e. NN ) -> ( K ` m ) <_ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ) |
| 7 |
|
hgt750leme.2 |
|- ( ( ph /\ m e. NN ) -> ( H ` m ) <_ ( 1 . _ 4 _ 1 4 ) ) |
| 8 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 9 |
|
3nn0 |
|- 3 e. NN0 |
| 10 |
9
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 11 |
|
ssidd |
|- ( ph -> NN C_ NN ) |
| 12 |
8 10 11
|
reprfi2 |
|- ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) |
| 13 |
|
diffi |
|- ( ( NN ( repr ` 3 ) N ) e. Fin -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) e. Fin ) |
| 15 |
|
vmaf |
|- Lam : NN --> RR |
| 16 |
15
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> Lam : NN --> RR ) |
| 17 |
|
ssidd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> NN C_ NN ) |
| 18 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> N e. ZZ ) |
| 20 |
9
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 3 e. NN0 ) |
| 21 |
|
simpr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) |
| 22 |
21
|
eldifad |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 23 |
17 19 20 22
|
reprf |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 24 |
|
c0ex |
|- 0 e. _V |
| 25 |
24
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 26 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 27 |
25 26
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 28 |
27
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 0 e. ( 0 ..^ 3 ) ) |
| 29 |
23 28
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 0 ) e. NN ) |
| 30 |
16 29
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
| 31 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 32 |
4
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> H : NN --> ( 0 [,) +oo ) ) |
| 33 |
32 29
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. ( 0 [,) +oo ) ) |
| 34 |
31 33
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( H ` ( n ` 0 ) ) e. RR ) |
| 35 |
30 34
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) e. RR ) |
| 36 |
|
1ex |
|- 1 e. _V |
| 37 |
36
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 38 |
37 26
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 39 |
38
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 1 e. ( 0 ..^ 3 ) ) |
| 40 |
23 39
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 1 ) e. NN ) |
| 41 |
16 40
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
| 42 |
5
|
adantr |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> K : NN --> ( 0 [,) +oo ) ) |
| 43 |
42 40
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. ( 0 [,) +oo ) ) |
| 44 |
31 43
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 1 ) ) e. RR ) |
| 45 |
41 44
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) e. RR ) |
| 46 |
|
2ex |
|- 2 e. _V |
| 47 |
46
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 48 |
47 26
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 49 |
48
|
a1i |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> 2 e. ( 0 ..^ 3 ) ) |
| 50 |
23 49
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( n ` 2 ) e. NN ) |
| 51 |
16 50
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
| 52 |
42 50
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. ( 0 [,) +oo ) ) |
| 53 |
31 52
|
sselid |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( K ` ( n ` 2 ) ) e. RR ) |
| 54 |
51 53
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) |
| 55 |
45 54
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) |
| 56 |
35 55
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 57 |
14 56
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 58 |
|
3re |
|- 3 e. RR |
| 59 |
58
|
a1i |
|- ( ph -> 3 e. RR ) |
| 60 |
|
1nn0 |
|- 1 e. NN0 |
| 61 |
|
0nn0 |
|- 0 e. NN0 |
| 62 |
|
7nn0 |
|- 7 e. NN0 |
| 63 |
|
9nn0 |
|- 9 e. NN0 |
| 64 |
|
5nn0 |
|- 5 e. NN0 |
| 65 |
|
5nn |
|- 5 e. NN |
| 66 |
|
nnrp |
|- ( 5 e. NN -> 5 e. RR+ ) |
| 67 |
65 66
|
ax-mp |
|- 5 e. RR+ |
| 68 |
64 67
|
rpdp2cl |
|- _ 5 5 e. RR+ |
| 69 |
63 68
|
rpdp2cl |
|- _ 9 _ 5 5 e. RR+ |
| 70 |
63 69
|
rpdp2cl |
|- _ 9 _ 9 _ 5 5 e. RR+ |
| 71 |
62 70
|
rpdp2cl |
|- _ 7 _ 9 _ 9 _ 5 5 e. RR+ |
| 72 |
61 71
|
rpdp2cl |
|- _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR+ |
| 73 |
60 72
|
rpdpcl |
|- ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ |
| 74 |
73
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR+ ) |
| 75 |
74
|
rpred |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
| 76 |
75
|
resqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) |
| 77 |
|
4nn0 |
|- 4 e. NN0 |
| 78 |
|
4nn |
|- 4 e. NN |
| 79 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
| 80 |
78 79
|
ax-mp |
|- 4 e. RR+ |
| 81 |
60 80
|
rpdp2cl |
|- _ 1 4 e. RR+ |
| 82 |
77 81
|
rpdp2cl |
|- _ 4 _ 1 4 e. RR+ |
| 83 |
60 82
|
rpdpcl |
|- ( 1 . _ 4 _ 1 4 ) e. RR+ |
| 84 |
83
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR+ ) |
| 85 |
84
|
rpred |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
| 86 |
76 85
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) |
| 87 |
|
fveq1 |
|- ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) |
| 88 |
87
|
eleq1d |
|- ( d = c -> ( ( d ` 0 ) e. ( O i^i Prime ) <-> ( c ` 0 ) e. ( O i^i Prime ) ) ) |
| 89 |
88
|
notbid |
|- ( d = c -> ( -. ( d ` 0 ) e. ( O i^i Prime ) <-> -. ( c ` 0 ) e. ( O i^i Prime ) ) ) |
| 90 |
89
|
cbvrabv |
|- { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } = { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` 0 ) e. ( O i^i Prime ) } |
| 91 |
90
|
ssrab3 |
|- { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) |
| 92 |
|
ssfi |
|- ( ( ( NN ( repr ` 3 ) N ) e. Fin /\ { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) |
| 93 |
12 91 92
|
sylancl |
|- ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } e. Fin ) |
| 94 |
15
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> Lam : NN --> RR ) |
| 95 |
|
ssidd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> NN C_ NN ) |
| 96 |
18
|
adantr |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> N e. ZZ ) |
| 97 |
9
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 3 e. NN0 ) |
| 98 |
91
|
a1i |
|- ( ph -> { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } C_ ( NN ( repr ` 3 ) N ) ) |
| 99 |
98
|
sselda |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 100 |
95 96 97 99
|
reprf |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 101 |
27
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 0 e. ( 0 ..^ 3 ) ) |
| 102 |
100 101
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 0 ) e. NN ) |
| 103 |
94 102
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
| 104 |
38
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 1 e. ( 0 ..^ 3 ) ) |
| 105 |
100 104
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 1 ) e. NN ) |
| 106 |
94 105
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
| 107 |
48
|
a1i |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> 2 e. ( 0 ..^ 3 ) ) |
| 108 |
100 107
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( n ` 2 ) e. NN ) |
| 109 |
94 108
|
ffvelcdmd |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
| 110 |
106 109
|
remulcld |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
| 111 |
103 110
|
remulcld |
|- ( ( ph /\ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 112 |
93 111
|
fsumrecl |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 113 |
86 112
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 114 |
59 113
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) |
| 115 |
|
4re |
|- 4 e. RR |
| 116 |
|
8re |
|- 8 e. RR |
| 117 |
115 116
|
pm3.2i |
|- ( 4 e. RR /\ 8 e. RR ) |
| 118 |
|
dp2cl |
|- ( ( 4 e. RR /\ 8 e. RR ) -> _ 4 8 e. RR ) |
| 119 |
117 118
|
ax-mp |
|- _ 4 8 e. RR |
| 120 |
58 119
|
pm3.2i |
|- ( 3 e. RR /\ _ 4 8 e. RR ) |
| 121 |
|
dp2cl |
|- ( ( 3 e. RR /\ _ 4 8 e. RR ) -> _ 3 _ 4 8 e. RR ) |
| 122 |
120 121
|
ax-mp |
|- _ 3 _ 4 8 e. RR |
| 123 |
|
dpcl |
|- ( ( 7 e. NN0 /\ _ 3 _ 4 8 e. RR ) -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 124 |
62 122 123
|
mp2an |
|- ( 7 . _ 3 _ 4 8 ) e. RR |
| 125 |
124
|
a1i |
|- ( ph -> ( 7 . _ 3 _ 4 8 ) e. RR ) |
| 126 |
2
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 127 |
126
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
| 128 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 129 |
126
|
rpge0d |
|- ( ph -> 0 <_ N ) |
| 130 |
128 129
|
resqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR ) |
| 131 |
126
|
rpsqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR+ ) |
| 132 |
131
|
rpne0d |
|- ( ph -> ( sqrt ` N ) =/= 0 ) |
| 133 |
127 130 132
|
redivcld |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR ) |
| 134 |
125 133
|
remulcld |
|- ( ph -> ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) e. RR ) |
| 135 |
128
|
resqcld |
|- ( ph -> ( N ^ 2 ) e. RR ) |
| 136 |
134 135
|
remulcld |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) e. RR ) |
| 137 |
|
0re |
|- 0 e. RR |
| 138 |
|
7re |
|- 7 e. RR |
| 139 |
|
9re |
|- 9 e. RR |
| 140 |
|
5re |
|- 5 e. RR |
| 141 |
140 140
|
pm3.2i |
|- ( 5 e. RR /\ 5 e. RR ) |
| 142 |
|
dp2cl |
|- ( ( 5 e. RR /\ 5 e. RR ) -> _ 5 5 e. RR ) |
| 143 |
141 142
|
ax-mp |
|- _ 5 5 e. RR |
| 144 |
139 143
|
pm3.2i |
|- ( 9 e. RR /\ _ 5 5 e. RR ) |
| 145 |
|
dp2cl |
|- ( ( 9 e. RR /\ _ 5 5 e. RR ) -> _ 9 _ 5 5 e. RR ) |
| 146 |
144 145
|
ax-mp |
|- _ 9 _ 5 5 e. RR |
| 147 |
139 146
|
pm3.2i |
|- ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) |
| 148 |
|
dp2cl |
|- ( ( 9 e. RR /\ _ 9 _ 5 5 e. RR ) -> _ 9 _ 9 _ 5 5 e. RR ) |
| 149 |
147 148
|
ax-mp |
|- _ 9 _ 9 _ 5 5 e. RR |
| 150 |
138 149
|
pm3.2i |
|- ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) |
| 151 |
|
dp2cl |
|- ( ( 7 e. RR /\ _ 9 _ 9 _ 5 5 e. RR ) -> _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
| 152 |
150 151
|
ax-mp |
|- _ 7 _ 9 _ 9 _ 5 5 e. RR |
| 153 |
137 152
|
pm3.2i |
|- ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
| 154 |
|
dp2cl |
|- ( ( 0 e. RR /\ _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) |
| 155 |
153 154
|
ax-mp |
|- _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR |
| 156 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 0 _ 7 _ 9 _ 9 _ 5 5 e. RR ) -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
| 157 |
60 155 156
|
mp2an |
|- ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR |
| 158 |
157
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. RR ) |
| 159 |
158
|
resqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR ) |
| 160 |
|
1re |
|- 1 e. RR |
| 161 |
160 115
|
pm3.2i |
|- ( 1 e. RR /\ 4 e. RR ) |
| 162 |
|
dp2cl |
|- ( ( 1 e. RR /\ 4 e. RR ) -> _ 1 4 e. RR ) |
| 163 |
161 162
|
ax-mp |
|- _ 1 4 e. RR |
| 164 |
115 163
|
pm3.2i |
|- ( 4 e. RR /\ _ 1 4 e. RR ) |
| 165 |
|
dp2cl |
|- ( ( 4 e. RR /\ _ 1 4 e. RR ) -> _ 4 _ 1 4 e. RR ) |
| 166 |
164 165
|
ax-mp |
|- _ 4 _ 1 4 e. RR |
| 167 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 4 _ 1 4 e. RR ) -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
| 168 |
60 166 167
|
mp2an |
|- ( 1 . _ 4 _ 1 4 ) e. RR |
| 169 |
168
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. RR ) |
| 170 |
159 169
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR ) |
| 171 |
41 51
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
| 172 |
30 171
|
remulcld |
|- ( ( ph /\ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 173 |
14 172
|
fsumrecl |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 174 |
170 173
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 175 |
59 112
|
remulcld |
|- ( ph -> ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 176 |
170 175
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) e. RR ) |
| 177 |
14 158 169 4 5 29 40 50 6 7
|
hgt750lemf |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 178 |
|
2re |
|- 2 e. RR |
| 179 |
178
|
a1i |
|- ( ph -> 2 e. RR ) |
| 180 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 181 |
|
2nn0 |
|- 2 e. NN0 |
| 182 |
181 62
|
deccl |
|- ; 2 7 e. NN0 |
| 183 |
180 182
|
nn0expcli |
|- ( ; 1 0 ^ ; 2 7 ) e. NN0 |
| 184 |
183
|
nn0rei |
|- ( ; 1 0 ^ ; 2 7 ) e. RR |
| 185 |
184
|
a1i |
|- ( ph -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
| 186 |
180
|
numexp1 |
|- ( ; 1 0 ^ 1 ) = ; 1 0 |
| 187 |
180
|
nn0rei |
|- ; 1 0 e. RR |
| 188 |
186 187
|
eqeltri |
|- ( ; 1 0 ^ 1 ) e. RR |
| 189 |
188
|
a1i |
|- ( ph -> ( ; 1 0 ^ 1 ) e. RR ) |
| 190 |
|
1nn |
|- 1 e. NN |
| 191 |
|
2lt9 |
|- 2 < 9 |
| 192 |
178 139 191
|
ltleii |
|- 2 <_ 9 |
| 193 |
190 61 181 192
|
declei |
|- 2 <_ ; 1 0 |
| 194 |
193 186
|
breqtrri |
|- 2 <_ ( ; 1 0 ^ 1 ) |
| 195 |
194
|
a1i |
|- ( ph -> 2 <_ ( ; 1 0 ^ 1 ) ) |
| 196 |
|
1z |
|- 1 e. ZZ |
| 197 |
182
|
nn0zi |
|- ; 2 7 e. ZZ |
| 198 |
187 196 197
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) |
| 199 |
|
1lt10 |
|- 1 < ; 1 0 |
| 200 |
198 199
|
pm3.2i |
|- ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) |
| 201 |
|
2nn |
|- 2 e. NN |
| 202 |
|
1lt9 |
|- 1 < 9 |
| 203 |
160 139 202
|
ltleii |
|- 1 <_ 9 |
| 204 |
201 62 60 203
|
declei |
|- 1 <_ ; 2 7 |
| 205 |
|
leexp2 |
|- ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) -> ( 1 <_ ; 2 7 <-> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) ) |
| 206 |
205
|
biimpa |
|- ( ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 7 e. ZZ ) /\ 1 < ; 1 0 ) /\ 1 <_ ; 2 7 ) -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 207 |
200 204 206
|
mp2an |
|- ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) |
| 208 |
207
|
a1i |
|- ( ph -> ( ; 1 0 ^ 1 ) <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 209 |
179 189 185 195 208
|
letrd |
|- ( ph -> 2 <_ ( ; 1 0 ^ ; 2 7 ) ) |
| 210 |
179 185 128 209 3
|
letrd |
|- ( ph -> 2 <_ N ) |
| 211 |
|
eqid |
|- ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) = ( e e. { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` a ) e. ( O i^i Prime ) } |-> ( e o. if ( a = 0 , ( _I |` ( 0 ..^ 3 ) ) , ( ( pmTrsp ` ( 0 ..^ 3 ) ) ` { a , 0 } ) ) ) ) |
| 212 |
1 2 210 90 211
|
hgt750lema |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 213 |
|
2z |
|- 2 e. ZZ |
| 214 |
213
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 215 |
74 214
|
rpexpcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR+ ) |
| 216 |
215 84
|
rpmulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR+ ) |
| 217 |
173 175 216
|
lemul2d |
|- ( ph -> ( sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) ) |
| 218 |
212 217
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
| 219 |
57 174 176 177 218
|
letrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
| 220 |
158
|
recnd |
|- ( ph -> ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) e. CC ) |
| 221 |
220
|
sqcld |
|- ( ph -> ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. CC ) |
| 222 |
169
|
recnd |
|- ( ph -> ( 1 . _ 4 _ 1 4 ) e. CC ) |
| 223 |
221 222
|
mulcld |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) |
| 224 |
|
3cn |
|- 3 e. CC |
| 225 |
224
|
a1i |
|- ( ph -> 3 e. CC ) |
| 226 |
112
|
recnd |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. CC ) |
| 227 |
223 225 226
|
mul12d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( 3 x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) = ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
| 228 |
219 227
|
breqtrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) ) |
| 229 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 230 |
|
diffi |
|- ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) |
| 231 |
229 230
|
ax-mp |
|- ( ( 1 ... N ) \ Prime ) e. Fin |
| 232 |
|
snfi |
|- { 2 } e. Fin |
| 233 |
|
unfi |
|- ( ( ( ( 1 ... N ) \ Prime ) e. Fin /\ { 2 } e. Fin ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
| 234 |
231 232 233
|
mp2an |
|- ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin |
| 235 |
234
|
a1i |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) |
| 236 |
15
|
a1i |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> Lam : NN --> RR ) |
| 237 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 238 |
237
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
| 239 |
238
|
ssdifssd |
|- ( ph -> ( ( 1 ... N ) \ Prime ) C_ NN ) |
| 240 |
201
|
a1i |
|- ( ph -> 2 e. NN ) |
| 241 |
240
|
snssd |
|- ( ph -> { 2 } C_ NN ) |
| 242 |
239 241
|
unssd |
|- ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) |
| 243 |
242
|
sselda |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> i e. NN ) |
| 244 |
236 243
|
ffvelcdmd |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. RR ) |
| 245 |
235 244
|
fsumrecl |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) e. RR ) |
| 246 |
|
chpvalz |
|- ( N e. ZZ -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
| 247 |
18 246
|
syl |
|- ( ph -> ( psi ` N ) = sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
| 248 |
|
chpf |
|- psi : RR --> RR |
| 249 |
248
|
a1i |
|- ( ph -> psi : RR --> RR ) |
| 250 |
249 128
|
ffvelcdmd |
|- ( ph -> ( psi ` N ) e. RR ) |
| 251 |
247 250
|
eqeltrrd |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. RR ) |
| 252 |
245 251
|
remulcld |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) e. RR ) |
| 253 |
127 252
|
remulcld |
|- ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) e. RR ) |
| 254 |
86 253
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) e. RR ) |
| 255 |
59 254
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) e. RR ) |
| 256 |
1 2 210 90
|
hgt750lemb |
|- ( ph -> sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) |
| 257 |
112 253 216
|
lemul2d |
|- ( ph -> ( sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) |
| 258 |
256 257
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) |
| 259 |
|
3rp |
|- 3 e. RR+ |
| 260 |
259
|
a1i |
|- ( ph -> 3 e. RR+ ) |
| 261 |
113 254 260
|
lemul2d |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) ) |
| 262 |
258 261
|
mpbid |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) ) |
| 263 |
|
6re |
|- 6 e. RR |
| 264 |
263 58
|
pm3.2i |
|- ( 6 e. RR /\ 3 e. RR ) |
| 265 |
|
dp2cl |
|- ( ( 6 e. RR /\ 3 e. RR ) -> _ 6 3 e. RR ) |
| 266 |
264 265
|
ax-mp |
|- _ 6 3 e. RR |
| 267 |
178 266
|
pm3.2i |
|- ( 2 e. RR /\ _ 6 3 e. RR ) |
| 268 |
|
dp2cl |
|- ( ( 2 e. RR /\ _ 6 3 e. RR ) -> _ 2 _ 6 3 e. RR ) |
| 269 |
267 268
|
ax-mp |
|- _ 2 _ 6 3 e. RR |
| 270 |
115 269
|
pm3.2i |
|- ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) |
| 271 |
|
dp2cl |
|- ( ( 4 e. RR /\ _ 2 _ 6 3 e. RR ) -> _ 4 _ 2 _ 6 3 e. RR ) |
| 272 |
270 271
|
ax-mp |
|- _ 4 _ 2 _ 6 3 e. RR |
| 273 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 4 _ 2 _ 6 3 e. RR ) -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) |
| 274 |
60 272 273
|
mp2an |
|- ( 1 . _ 4 _ 2 _ 6 3 ) e. RR |
| 275 |
274
|
a1i |
|- ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. RR ) |
| 276 |
275 130
|
remulcld |
|- ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) e. RR ) |
| 277 |
116 58
|
pm3.2i |
|- ( 8 e. RR /\ 3 e. RR ) |
| 278 |
|
dp2cl |
|- ( ( 8 e. RR /\ 3 e. RR ) -> _ 8 3 e. RR ) |
| 279 |
277 278
|
ax-mp |
|- _ 8 3 e. RR |
| 280 |
116 279
|
pm3.2i |
|- ( 8 e. RR /\ _ 8 3 e. RR ) |
| 281 |
|
dp2cl |
|- ( ( 8 e. RR /\ _ 8 3 e. RR ) -> _ 8 _ 8 3 e. RR ) |
| 282 |
280 281
|
ax-mp |
|- _ 8 _ 8 3 e. RR |
| 283 |
58 282
|
pm3.2i |
|- ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) |
| 284 |
|
dp2cl |
|- ( ( 3 e. RR /\ _ 8 _ 8 3 e. RR ) -> _ 3 _ 8 _ 8 3 e. RR ) |
| 285 |
283 284
|
ax-mp |
|- _ 3 _ 8 _ 8 3 e. RR |
| 286 |
137 285
|
pm3.2i |
|- ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) |
| 287 |
|
dp2cl |
|- ( ( 0 e. RR /\ _ 3 _ 8 _ 8 3 e. RR ) -> _ 0 _ 3 _ 8 _ 8 3 e. RR ) |
| 288 |
286 287
|
ax-mp |
|- _ 0 _ 3 _ 8 _ 8 3 e. RR |
| 289 |
|
dpcl |
|- ( ( 1 e. NN0 /\ _ 0 _ 3 _ 8 _ 8 3 e. RR ) -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) |
| 290 |
60 288 289
|
mp2an |
|- ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR |
| 291 |
290
|
a1i |
|- ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. RR ) |
| 292 |
291 128
|
remulcld |
|- ( ph -> ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) e. RR ) |
| 293 |
276 292
|
remulcld |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) e. RR ) |
| 294 |
127 293
|
remulcld |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) e. RR ) |
| 295 |
86 294
|
remulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) e. RR ) |
| 296 |
59 295
|
remulcld |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) e. RR ) |
| 297 |
|
vmage0 |
|- ( i e. NN -> 0 <_ ( Lam ` i ) ) |
| 298 |
243 297
|
syl |
|- ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> 0 <_ ( Lam ` i ) ) |
| 299 |
235 244 298
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) ) |
| 300 |
2 3
|
hgt750lemd |
|- ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) < ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) ) |
| 301 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 302 |
15
|
a1i |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> Lam : NN --> RR ) |
| 303 |
238
|
sselda |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) |
| 304 |
302 303
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) |
| 305 |
|
vmage0 |
|- ( j e. NN -> 0 <_ ( Lam ` j ) ) |
| 306 |
303 305
|
syl |
|- ( ( ph /\ j e. ( 1 ... N ) ) -> 0 <_ ( Lam ` j ) ) |
| 307 |
301 304 306
|
fsumge0 |
|- ( ph -> 0 <_ sum_ j e. ( 1 ... N ) ( Lam ` j ) ) |
| 308 |
2
|
hgt750lemc |
|- ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) |
| 309 |
245 276 251 292 299 300 307 308
|
ltmul12ad |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) < ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) |
| 310 |
252 293 309
|
ltled |
|- ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) |
| 311 |
160
|
a1i |
|- ( ph -> 1 e. RR ) |
| 312 |
|
1lt2 |
|- 1 < 2 |
| 313 |
312
|
a1i |
|- ( ph -> 1 < 2 ) |
| 314 |
311 179 128 313 210
|
ltletrd |
|- ( ph -> 1 < N ) |
| 315 |
128 314
|
rplogcld |
|- ( ph -> ( log ` N ) e. RR+ ) |
| 316 |
252 293 315
|
lemul2d |
|- ( ph -> ( ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) <_ ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) <-> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) |
| 317 |
310 316
|
mpbid |
|- ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) |
| 318 |
253 294 216
|
lemul2d |
|- ( ph -> ( ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) <_ ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) <-> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) |
| 319 |
317 318
|
mpbid |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) |
| 320 |
254 295 260
|
lemul2d |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) <_ ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) <-> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) ) |
| 321 |
319 320
|
mpbid |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) ) |
| 322 |
157
|
resqcli |
|- ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) e. RR |
| 323 |
322 168
|
remulcli |
|- ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. RR |
| 324 |
274 290
|
remulcli |
|- ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. RR |
| 325 |
323 324
|
remulcli |
|- ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. RR |
| 326 |
58 325
|
remulcli |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR |
| 327 |
|
hgt750lem2 |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) < ( 7 . _ 3 _ 4 8 ) |
| 328 |
326 124 327
|
ltleii |
|- ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) |
| 329 |
326
|
a1i |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) e. RR ) |
| 330 |
315 131
|
rpdivcld |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. RR+ ) |
| 331 |
126 214
|
rpexpcld |
|- ( ph -> ( N ^ 2 ) e. RR+ ) |
| 332 |
330 331
|
rpmulcld |
|- ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) e. RR+ ) |
| 333 |
329 125 332
|
lemul1d |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) <_ ( 7 . _ 3 _ 4 8 ) <-> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) ) |
| 334 |
328 333
|
mpbii |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) <_ ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
| 335 |
275
|
recnd |
|- ( ph -> ( 1 . _ 4 _ 2 _ 6 3 ) e. CC ) |
| 336 |
130
|
recnd |
|- ( ph -> ( sqrt ` N ) e. CC ) |
| 337 |
291
|
recnd |
|- ( ph -> ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) e. CC ) |
| 338 |
128
|
recnd |
|- ( ph -> N e. CC ) |
| 339 |
335 336 337 338
|
mul4d |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) |
| 340 |
339
|
oveq2d |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) ) |
| 341 |
127
|
recnd |
|- ( ph -> ( log ` N ) e. CC ) |
| 342 |
335 337
|
mulcld |
|- ( ph -> ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) e. CC ) |
| 343 |
336 338
|
mulcld |
|- ( ph -> ( ( sqrt ` N ) x. N ) e. CC ) |
| 344 |
342 343
|
mulcld |
|- ( ph -> ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) e. CC ) |
| 345 |
341 344
|
mulcomd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) |
| 346 |
340 345
|
eqtrd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) ) |
| 347 |
342 343 341
|
mulassd |
|- ( ph -> ( ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( sqrt ` N ) x. N ) ) x. ( log ` N ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
| 348 |
346 347
|
eqtrd |
|- ( ph -> ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) = ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
| 349 |
348
|
oveq2d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
| 350 |
86
|
recnd |
|- ( ph -> ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) e. CC ) |
| 351 |
343 341
|
mulcld |
|- ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) e. CC ) |
| 352 |
350 342 351
|
mulassd |
|- ( ph -> ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
| 353 |
349 352
|
eqtr4d |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) = ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
| 354 |
353
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
| 355 |
59
|
recnd |
|- ( ph -> 3 e. CC ) |
| 356 |
350 342
|
mulcld |
|- ( ph -> ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) e. CC ) |
| 357 |
355 356 351
|
mulassd |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( 3 x. ( ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) ) |
| 358 |
354 357
|
eqtr4d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) ) |
| 359 |
135
|
recnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
| 360 |
341 336 359 132
|
div32d |
|- ( ph -> ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) = ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) ) |
| 361 |
359 336 132
|
divcld |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) e. CC ) |
| 362 |
341 361
|
mulcomd |
|- ( ph -> ( ( log ` N ) x. ( ( N ^ 2 ) / ( sqrt ` N ) ) ) = ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) ) |
| 363 |
338
|
sqvald |
|- ( ph -> ( N ^ 2 ) = ( N x. N ) ) |
| 364 |
363
|
oveq1d |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( N x. N ) / ( sqrt ` N ) ) ) |
| 365 |
338 338 336 132
|
divassd |
|- ( ph -> ( ( N x. N ) / ( sqrt ` N ) ) = ( N x. ( N / ( sqrt ` N ) ) ) ) |
| 366 |
|
divsqrtid |
|- ( N e. RR+ -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) |
| 367 |
126 366
|
syl |
|- ( ph -> ( N / ( sqrt ` N ) ) = ( sqrt ` N ) ) |
| 368 |
367
|
oveq2d |
|- ( ph -> ( N x. ( N / ( sqrt ` N ) ) ) = ( N x. ( sqrt ` N ) ) ) |
| 369 |
364 365 368
|
3eqtrd |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( N x. ( sqrt ` N ) ) ) |
| 370 |
338 336
|
mulcomd |
|- ( ph -> ( N x. ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) |
| 371 |
369 370
|
eqtrd |
|- ( ph -> ( ( N ^ 2 ) / ( sqrt ` N ) ) = ( ( sqrt ` N ) x. N ) ) |
| 372 |
371
|
oveq1d |
|- ( ph -> ( ( ( N ^ 2 ) / ( sqrt ` N ) ) x. ( log ` N ) ) = ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) |
| 373 |
360 362 372
|
3eqtrrd |
|- ( ph -> ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) = ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) |
| 374 |
373
|
oveq2d |
|- ( ph -> ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( sqrt ` N ) x. N ) x. ( log ` N ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
| 375 |
358 374
|
eqtrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) = ( ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) ) ) ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
| 376 |
125
|
recnd |
|- ( ph -> ( 7 . _ 3 _ 4 8 ) e. CC ) |
| 377 |
133
|
recnd |
|- ( ph -> ( ( log ` N ) / ( sqrt ` N ) ) e. CC ) |
| 378 |
376 377 359
|
mulassd |
|- ( ph -> ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) = ( ( 7 . _ 3 _ 4 8 ) x. ( ( ( log ` N ) / ( sqrt ` N ) ) x. ( N ^ 2 ) ) ) ) |
| 379 |
334 375 378
|
3brtr4d |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( ( ( 1 . _ 4 _ 2 _ 6 3 ) x. ( sqrt ` N ) ) x. ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. N ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
| 380 |
255 296 136 321 379
|
letrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
| 381 |
114 255 136 262 380
|
letrd |
|- ( ph -> ( 3 x. ( ( ( ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ^ 2 ) x. ( 1 . _ 4 _ 1 4 ) ) x. sum_ n e. { d e. ( NN ( repr ` 3 ) N ) | -. ( d ` 0 ) e. ( O i^i Prime ) } ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |
| 382 |
57 114 136 228 381
|
letrd |
|- ( ph -> sum_ n e. ( ( NN ( repr ` 3 ) N ) \ ( ( O i^i Prime ) ( repr ` 3 ) N ) ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( 7 . _ 3 _ 4 8 ) x. ( ( log ` N ) / ( sqrt ` N ) ) ) x. ( N ^ 2 ) ) ) |