| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgt750lemf.a |
|- ( ph -> A e. Fin ) |
| 2 |
|
hgt750lemf.p |
|- ( ph -> P e. RR ) |
| 3 |
|
hgt750lemf.q |
|- ( ph -> Q e. RR ) |
| 4 |
|
hgt750lemf.h |
|- ( ph -> H : NN --> ( 0 [,) +oo ) ) |
| 5 |
|
hgt750lemf.k |
|- ( ph -> K : NN --> ( 0 [,) +oo ) ) |
| 6 |
|
hgt750lemf.0 |
|- ( ( ph /\ n e. A ) -> ( n ` 0 ) e. NN ) |
| 7 |
|
hgt750lemf.1 |
|- ( ( ph /\ n e. A ) -> ( n ` 1 ) e. NN ) |
| 8 |
|
hgt750lemf.2 |
|- ( ( ph /\ n e. A ) -> ( n ` 2 ) e. NN ) |
| 9 |
|
hgt750lemf.3 |
|- ( ( ph /\ m e. NN ) -> ( K ` m ) <_ P ) |
| 10 |
|
hgt750lemf.4 |
|- ( ( ph /\ m e. NN ) -> ( H ` m ) <_ Q ) |
| 11 |
|
vmaf |
|- Lam : NN --> RR |
| 12 |
11
|
a1i |
|- ( ( ph /\ n e. A ) -> Lam : NN --> RR ) |
| 13 |
12 6
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. RR ) |
| 14 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 15 |
4
|
adantr |
|- ( ( ph /\ n e. A ) -> H : NN --> ( 0 [,) +oo ) ) |
| 16 |
15 6
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( H ` ( n ` 0 ) ) e. ( 0 [,) +oo ) ) |
| 17 |
14 16
|
sselid |
|- ( ( ph /\ n e. A ) -> ( H ` ( n ` 0 ) ) e. RR ) |
| 18 |
13 17
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) e. RR ) |
| 19 |
12 7
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. RR ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ n e. A ) -> K : NN --> ( 0 [,) +oo ) ) |
| 21 |
20 7
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 1 ) ) e. ( 0 [,) +oo ) ) |
| 22 |
14 21
|
sselid |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 1 ) ) e. RR ) |
| 23 |
19 22
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) e. RR ) |
| 24 |
12 8
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) e. RR ) |
| 25 |
20 8
|
ffvelcdmd |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 2 ) ) e. ( 0 [,) +oo ) ) |
| 26 |
14 25
|
sselid |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 2 ) ) e. RR ) |
| 27 |
24 26
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) |
| 28 |
23 27
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) |
| 29 |
18 28
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 30 |
2
|
resqcld |
|- ( ph -> ( P ^ 2 ) e. RR ) |
| 31 |
30 3
|
remulcld |
|- ( ph -> ( ( P ^ 2 ) x. Q ) e. RR ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ n e. A ) -> ( ( P ^ 2 ) x. Q ) e. RR ) |
| 33 |
19 24
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) |
| 34 |
13 33
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) |
| 35 |
32 34
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( ( P ^ 2 ) x. Q ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) e. RR ) |
| 36 |
13
|
recnd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. CC ) |
| 37 |
33
|
recnd |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. CC ) |
| 38 |
17
|
recnd |
|- ( ( ph /\ n e. A ) -> ( H ` ( n ` 0 ) ) e. CC ) |
| 39 |
22 26
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ph /\ n e. A ) -> ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) e. CC ) |
| 41 |
36 37 38 40
|
mul4d |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) x. ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 42 |
36 37
|
mulcld |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. CC ) |
| 43 |
38 40
|
mulcld |
|- ( ( ph /\ n e. A ) -> ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. CC ) |
| 44 |
42 43
|
mulcomd |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) x. ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = ( ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 45 |
19
|
recnd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. CC ) |
| 46 |
24
|
recnd |
|- ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) e. CC ) |
| 47 |
22
|
recnd |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 1 ) ) e. CC ) |
| 48 |
26
|
recnd |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 2 ) ) e. CC ) |
| 49 |
45 46 47 48
|
mul4d |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) = ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) |
| 50 |
49
|
oveq2d |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 51 |
41 44 50
|
3eqtr3d |
|- ( ( ph /\ n e. A ) -> ( ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 52 |
17 39
|
remulcld |
|- ( ( ph /\ n e. A ) -> ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) e. RR ) |
| 53 |
|
vmage0 |
|- ( ( n ` 0 ) e. NN -> 0 <_ ( Lam ` ( n ` 0 ) ) ) |
| 54 |
6 53
|
syl |
|- ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 0 ) ) ) |
| 55 |
|
vmage0 |
|- ( ( n ` 1 ) e. NN -> 0 <_ ( Lam ` ( n ` 1 ) ) ) |
| 56 |
7 55
|
syl |
|- ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 1 ) ) ) |
| 57 |
|
vmage0 |
|- ( ( n ` 2 ) e. NN -> 0 <_ ( Lam ` ( n ` 2 ) ) ) |
| 58 |
8 57
|
syl |
|- ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 2 ) ) ) |
| 59 |
19 24 56 58
|
mulge0d |
|- ( ( ph /\ n e. A ) -> 0 <_ ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) |
| 60 |
13 33 54 59
|
mulge0d |
|- ( ( ph /\ n e. A ) -> 0 <_ ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) |
| 61 |
3
|
adantr |
|- ( ( ph /\ n e. A ) -> Q e. RR ) |
| 62 |
2 2
|
remulcld |
|- ( ph -> ( P x. P ) e. RR ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ n e. A ) -> ( P x. P ) e. RR ) |
| 64 |
|
0xr |
|- 0 e. RR* |
| 65 |
64
|
a1i |
|- ( ( ph /\ n e. A ) -> 0 e. RR* ) |
| 66 |
|
pnfxr |
|- +oo e. RR* |
| 67 |
66
|
a1i |
|- ( ( ph /\ n e. A ) -> +oo e. RR* ) |
| 68 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( H ` ( n ` 0 ) ) e. ( 0 [,) +oo ) ) -> 0 <_ ( H ` ( n ` 0 ) ) ) |
| 69 |
65 67 16 68
|
syl3anc |
|- ( ( ph /\ n e. A ) -> 0 <_ ( H ` ( n ` 0 ) ) ) |
| 70 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( K ` ( n ` 1 ) ) e. ( 0 [,) +oo ) ) -> 0 <_ ( K ` ( n ` 1 ) ) ) |
| 71 |
65 67 21 70
|
syl3anc |
|- ( ( ph /\ n e. A ) -> 0 <_ ( K ` ( n ` 1 ) ) ) |
| 72 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( K ` ( n ` 2 ) ) e. ( 0 [,) +oo ) ) -> 0 <_ ( K ` ( n ` 2 ) ) ) |
| 73 |
65 67 25 72
|
syl3anc |
|- ( ( ph /\ n e. A ) -> 0 <_ ( K ` ( n ` 2 ) ) ) |
| 74 |
22 26 71 73
|
mulge0d |
|- ( ( ph /\ n e. A ) -> 0 <_ ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
| 75 |
|
fveq2 |
|- ( m = ( n ` 0 ) -> ( H ` m ) = ( H ` ( n ` 0 ) ) ) |
| 76 |
75
|
breq1d |
|- ( m = ( n ` 0 ) -> ( ( H ` m ) <_ Q <-> ( H ` ( n ` 0 ) ) <_ Q ) ) |
| 77 |
10
|
ralrimiva |
|- ( ph -> A. m e. NN ( H ` m ) <_ Q ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ n e. A ) -> A. m e. NN ( H ` m ) <_ Q ) |
| 79 |
76 78 6
|
rspcdva |
|- ( ( ph /\ n e. A ) -> ( H ` ( n ` 0 ) ) <_ Q ) |
| 80 |
2
|
adantr |
|- ( ( ph /\ n e. A ) -> P e. RR ) |
| 81 |
|
fveq2 |
|- ( m = ( n ` 1 ) -> ( K ` m ) = ( K ` ( n ` 1 ) ) ) |
| 82 |
81
|
breq1d |
|- ( m = ( n ` 1 ) -> ( ( K ` m ) <_ P <-> ( K ` ( n ` 1 ) ) <_ P ) ) |
| 83 |
9
|
ralrimiva |
|- ( ph -> A. m e. NN ( K ` m ) <_ P ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ n e. A ) -> A. m e. NN ( K ` m ) <_ P ) |
| 85 |
82 84 7
|
rspcdva |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 1 ) ) <_ P ) |
| 86 |
|
fveq2 |
|- ( m = ( n ` 2 ) -> ( K ` m ) = ( K ` ( n ` 2 ) ) ) |
| 87 |
86
|
breq1d |
|- ( m = ( n ` 2 ) -> ( ( K ` m ) <_ P <-> ( K ` ( n ` 2 ) ) <_ P ) ) |
| 88 |
87 84 8
|
rspcdva |
|- ( ( ph /\ n e. A ) -> ( K ` ( n ` 2 ) ) <_ P ) |
| 89 |
22 80 26 80 71 73 85 88
|
lemul12ad |
|- ( ( ph /\ n e. A ) -> ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) <_ ( P x. P ) ) |
| 90 |
17 61 39 63 69 74 79 89
|
lemul12ad |
|- ( ( ph /\ n e. A ) -> ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) <_ ( Q x. ( P x. P ) ) ) |
| 91 |
30
|
recnd |
|- ( ph -> ( P ^ 2 ) e. CC ) |
| 92 |
3
|
recnd |
|- ( ph -> Q e. CC ) |
| 93 |
91 92
|
mulcomd |
|- ( ph -> ( ( P ^ 2 ) x. Q ) = ( Q x. ( P ^ 2 ) ) ) |
| 94 |
2
|
recnd |
|- ( ph -> P e. CC ) |
| 95 |
94
|
sqvald |
|- ( ph -> ( P ^ 2 ) = ( P x. P ) ) |
| 96 |
95
|
oveq2d |
|- ( ph -> ( Q x. ( P ^ 2 ) ) = ( Q x. ( P x. P ) ) ) |
| 97 |
93 96
|
eqtrd |
|- ( ph -> ( ( P ^ 2 ) x. Q ) = ( Q x. ( P x. P ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ n e. A ) -> ( ( P ^ 2 ) x. Q ) = ( Q x. ( P x. P ) ) ) |
| 99 |
90 98
|
breqtrrd |
|- ( ( ph /\ n e. A ) -> ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) <_ ( ( P ^ 2 ) x. Q ) ) |
| 100 |
52 32 34 60 99
|
lemul1ad |
|- ( ( ph /\ n e. A ) -> ( ( ( H ` ( n ` 0 ) ) x. ( ( K ` ( n ` 1 ) ) x. ( K ` ( n ` 2 ) ) ) ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) <_ ( ( ( P ^ 2 ) x. Q ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 101 |
51 100
|
eqbrtrrd |
|- ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( P ^ 2 ) x. Q ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 102 |
1 29 35 101
|
fsumle |
|- ( ph -> sum_ n e. A ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ sum_ n e. A ( ( ( P ^ 2 ) x. Q ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 103 |
31
|
recnd |
|- ( ph -> ( ( P ^ 2 ) x. Q ) e. CC ) |
| 104 |
34
|
recnd |
|- ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. CC ) |
| 105 |
1 103 104
|
fsummulc2 |
|- ( ph -> ( ( ( P ^ 2 ) x. Q ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) = sum_ n e. A ( ( ( P ^ 2 ) x. Q ) x. ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |
| 106 |
102 105
|
breqtrrd |
|- ( ph -> sum_ n e. A ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) <_ ( ( ( P ^ 2 ) x. Q ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) ) |